Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.
83
73
53
2
Correct answer is A
∫1−1(x+1)2dx≡∫1−1(x2+2x+1)dx
= x33+x2+x|1−1
= (133+12+1)−((−1)33+(−1)2+(−1))=73+13=83
Calculate the standard deviation of 30, 29, 25, 28, 32 and 24.
2.0
2.8
3.0
3.2
Correct answer is B
x | x−μ | (x−μ)2 |
24 | -4 | 16 |
25 | -3 | 9 |
28 | 0 | 0 |
29 | 1 | 1 |
30 | 2 | 4 |
32 | 4 | 16 |
∑ = 168 | 46 |
μ=24+25+28+29+30+326=1688=28
S.D=√∑(x−μ)2n=√466
= √7.67≊
Evaluate \int_{\frac{1}{2}}^{1} \frac{x^{3} - 4}{x^{3}} \mathrm {d} x.
-5.5
-2.0
2.0
5.5
Correct answer is A
\int_{\frac{1}{2}}^{1} \frac{x^{3} - 4}{x^{3}} \mathrm {d} x \equiv \int_{\frac{1}{2}}^{1} 1 - \frac{4}{x^{3}} \mathrm {d} x.
= \int_{\frac{1}{2}}^{1} 1 - 4x^{-3} \mathrm {d} x.
= \left. x - \frac{4x^{-2}}{-2}\right |_{\frac{1}{2}}^{1} = \left. x + \frac{2}{x^{2}}\right |_{\frac{1}{2}}^{1}
= (1 + 2) - (\frac{1}{2} + 8) = 3 - 8.5 = -5.5
Find the stationary point of the curve y = 3x^{2} - 2x^{3}.
(1, 0)
(-1, 0)
(1, 1)
(-1, -1)
Correct answer is A
y = 3x^{2} - 2x^{3}
\frac{\mathrm d y}{\mathrm d x} = 6x - 6x^{2} = 0 \implies 6x(1 - x) = 0
x = 0, 1, when x = 1, y = 0.
when x = 1, y = 0.
The stationary point is (1, 0)
The midpoint of M(4, -1) and N(x, y) is P(3, -4). Find the coordinates of N.
(2, -3)
(2, -7)
(-1, -3)
(-10, -7)
Correct answer is B
Given M(4, -1) and N(x, y) with midpoint P(3, -4).
\implies \frac{4 + x}{2} = 3; \frac{-1 + y}{2} = -4
\therefore x = 2; y = -7
N = (2, -7)