Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

651.

Out of 70 schools, 42 of them can be attended by boys and 35 can be attended by girls. If a pupil is selected at random from these schools, find the probability that he/ she is from a mixed school.

A.

\(\frac{1}{11}\)

B.

\(\frac{1}{10}\)

C.

\(\frac{1}{6}\)

D.

\(\frac{1}{5}\)

Correct answer is B

Let the number of mixed schools be S

The number of boys only = 42 - S

The number of girls only = 35 - S

(42 - S) + S + (35 - S) = 77 - S = 70

\(\implies\) S = 7

\(Probability = \frac{7}{70} = \frac{1}{10}\)

652.

Evaluate \(\int_{-1}^{1} (x + 1)^{2}\mathrm {d} x\). 

A.

\(\frac{8}{3}\)

B.

\(\frac{7}{3}\)

C.

\(\frac{5}{3}\)

D.

2

Correct answer is A

 \(\int_{-1}^{1} (x + 1)^{2}\mathrm {d} x \equiv \int_{-1}^{1} (x^{2} + 2x + 1)\mathrm {d} x\)

= \(\left. \frac{x^{3}}{3} + x^{2} + x \right |_{-1}^{1}\)

= \((\frac{1^{3}}{3} + 1^{2} + 1) - (\frac{(-1)^{3}}{3} + (-1)^{2} + (-1)) = \frac{7}{3} + \frac{1}{3} = \frac{8}{3}\)

653.

Calculate the standard deviation of 30, 29, 25, 28, 32 and 24.

A.

2.0

B.

2.8

C.

3.0

D.

3.2

Correct answer is B

\(x\) \(x - \mu\) \((x - \mu)^{2}\)
24 -4 16
25 -3 9
28 0 0
29 1 1
30 2 4
32 4 16
\(\sum\) = 168   46

\(\mu = \frac{24+25+28+29+30+32}{6} = \frac{168}{8} = 28\)

\(S.D = \sqrt{\frac{\sum{(x - \mu)^{2}}}{n}} = \sqrt{\frac{46}{6}}\)

= \(\sqrt{7.67} \approxeq 2.8\)

654.

Evaluate \(\int_{\frac{1}{2}}^{1} \frac{x^{3} - 4}{x^{3}} \mathrm {d} x\).

A.

-5.5

B.

-2.0

C.

2.0

D.

5.5

Correct answer is A

\(\int_{\frac{1}{2}}^{1} \frac{x^{3} - 4}{x^{3}} \mathrm {d} x \equiv \int_{\frac{1}{2}}^{1} 1 - \frac{4}{x^{3}} \mathrm {d} x\).

= \(\int_{\frac{1}{2}}^{1} 1 - 4x^{-3} \mathrm {d} x\).

= \(\left. x - \frac{4x^{-2}}{-2}\right |_{\frac{1}{2}}^{1} = \left. x + \frac{2}{x^{2}}\right |_{\frac{1}{2}}^{1}\)

= \((1 + 2) - (\frac{1}{2} + 8) = 3 - 8.5 = -5.5\)

655.

Find the stationary point of the curve \(y = 3x^{2} - 2x^{3}\).

A.

(1, 0)

B.

(-1, 0)

C.

(1, 1)

D.

(-1, -1)

Correct answer is A

\(y = 3x^{2} - 2x^{3}\)

\(\frac{\mathrm d y}{\mathrm d x} = 6x - 6x^{2} = 0 \implies 6x(1 - x) = 0\)

\(x = 0, 1\), when x = 1, y = 0.

when x = 1, y = 0.

The stationary point is (1, 0)