Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.
Resolve \(\frac{3x - 1}{(x - 2)^{2}}, x \neq 2\) into partial fractions.
\(\frac{x}{2(x - 2)} - \frac{5}{(x - 2)^{2}}\)
\(\frac{5}{(x - 2)} + \frac{x}{2(x - 2)^{2}}\)
\(\frac{1}{2(x - 2)} + \frac{5x}{2(x- 2)^{2}}\)
\(\frac{-1}{2(x - 2)} + \frac{8x}{2(x - 2)^{2}}\)
Correct answer is C
\(\frac{3x - 1}{(x - 2)^{2}} = \frac{A}{(x - 2)} + \frac{Bx}{(x - 2)^{2}}\)
\(\frac{3x - 1}{(x - 2)^{2}} = \frac{A(x - 2) + Bx}{(x - 2)^{2}}\)
Comparing, we have
\(3x - 1 = Ax - 2A + Bx \implies -2A = -1; A + B = 3\)
\(\therefore A = \frac{1}{2}; B = \frac{5}{2}\)
= \(\frac{1}{2(x - 2)} + \frac{5x}{2(x - 2)^{2}}\)
\(2x^{2} - 9x + 15 = 0\)
\(2x^{2} - 9x + 13 = 0\)
\(2x^{2} - 9x - 13 = 0\)
\(2x^{2} - 9x - 15 = 0\)
Correct answer is B
Note: Given the sum of the roots and its product, we can get the equation using the formula:
\(x^{2} - (\alpha + \beta)x + (\alpha\beta) = 0\). This will be used later on in the course of our solution.
Given equation: \(2x^{2} - 5x + 6 = 0; a = 2, b = -5, c = 6\).
\(\alpha + \beta = \frac{-b}{a} = \frac{-(-5)}{2} = \frac{5}{2}\)
\(\alpha\beta = \frac{c}{a} = \frac{6}{2} = 3\)
Given the roots of the new equation as \((\alpha + 1)\) and \((\beta + 1)\), their sum and product will be
\((\alpha + 1) + (\beta + 1) = \alpha + \beta + 2 = \frac{5}{2} + 2 = \frac{9}{2} = \frac{-b}{a}\)
\((\alpha + 1)(\beta + 1) = \alpha\beta + \alpha + \beta + 1 = 3 + \frac{5}{2} + 1 = \frac{13}{2} = \frac{c}{a}\)
The new equation is given by: \(x^{2} - (\frac{-b}{a})x + (\frac{c}{a}) = 0\)
= \(x^{2} - (\frac{9}{2})x + \frac{13}{2} = 2x^{2} - 9x + 13 = 0\)
If \(\log_{3}a - 2 = 3\log_{3}b\), express a in terms of b.
\(a = b^{3} - 3\)
\(a = b^{3} - 9\)
\(a = 9b^{3}\)
\(a = \frac{b^{3}}{9}\)
Correct answer is C
\(\log_{3}a - 2 = 3\log_{3}b\)
Using the laws of logarithm, we know that \( 2 = 2\log_{3}3 = \log_{3}3^{2}\)
\(\therefore \log_{3}a - \log_{3}3^{2} = \log_{3}b^{3}\)
= \(\log_{3}(\frac{a}{3^{2}}) = \log_{3}b^{3} \implies \frac{a}{9} = b^{3}\)
\(\implies a = 9b^{3}\)
\(Q \cap R = \varnothing\)
\(R \subset P\)
\((R \cap P) \subset (R \cap U)\)
\(n(P' \cap R) = 2\)
Correct answer is C
All the statements are false except option C.
\(R \cap P = {3, 5, 7} and R \cap U = {2, 3, 5, 7, 11}\)
\(\therefore (R \cap P) \subset (R \cap U)\)
If the polynomial \(f(x) = 3x^{3} - 2x^{2} + 7x + 5\) is divided by (x - 1), find the remainder.
-17
-7
5
13
Correct answer is D
\(f(x) = 3x^{3} - 2x^{2} + 7x + 5\).
\(x - 1 = 0, x = 1\)
\(f(1) = 3(1)^{3} - 2(1)^{2} + 7(1) + 5 = 13\)