Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

641.

Two functions f and g are defined on the set of real numbers by \(f : x \to x^{2} + 1\) and \(g : x \to x - 2\). Find f o g

A.

\(x^{2} + 4x - 5\)

B.

\(x^{2} - 4x + 5\)

C.

\(x^{2} - 1\)

D.

\(x - 1\)

Correct answer is B

\(f(x) = x^{2} + 1\)  and  \(g(x) = x - 2\)

\(f o g = f(g(x)) = f(x - 2) = (x - 2)^{2} + 1 \)

= \(x^{2} - 4x + 4 + 1 = x^{2} - 4x + 5\)

642.

A car is moving at 120\(kmh^{-1}\). Find its speed in \(ms^{-1}\).

A.

33.3\(ms^{-1}\)

B.

66.6\(ms^{-1}\)

C.

99.9\(ms^{-1}\)

D.

120.0\(ms^{-1}\)

Correct answer is A

\(120 kmh^{-1} = \frac{120 \times 1000}{3600} = \frac{100}{3} = 33.3ms^{-1}\)

643.

A particle starts from rest and moves through a distance \(S = 12t^{2} - 2t^{3}\) metres in time t seconds. Find its acceleration in 1 second.

A.

24\(ms^{-2}\)

B.

18\(ms^{-2}\)

C.

12\(ms^{-2}\)

D.

10\(ms^{-2}\)

Correct answer is C

\(\frac{\mathrm d s(t)}{\mathrm d t} = v(t)\) and \(\frac{\mathrm d v(t)}{\mathrm d t} = a(t)\)

\(\therefore v(t) = \frac{\mathrm d (12t^{2} - 2t^{3})}{\mathrm d t} = 24t - 6t^{2}\)

\(\frac{\mathrm d (24t - 6t^{2})}{\mathrm d t} = 24 - 12t = a(t)\)

\(a(1) = 24 - 12(1) = 24 - 12 = 12ms^{-2}\)

644.

Find the constant term in the binomial expansion \((2x^{2} + \frac{1}{x})^{9}\)

A.

84

B.

168

C.

336

D.

672

Correct answer is D

Let the power of \(2x^{2}\) be t and the power of \(\frac{1}{x} \equiv x^{-1}\) = 9 - t.

\((2x^{2})^{t}(x^{-1})^{9 - t} = x^{0}\)

Dealing with x alone, we have

\((x^{2t})(x^{-9 + t}) = x^{0} \implies 2t - 9 + t = 0\)

\(3t - 9 = 0 \therefore t = 3\)

The binomial expansion is then,

\(^{9}C_{3} (2x^{2})^{3}(x^{-1})^{6} = \frac{9!}{(9-3)! 3!} \times 2^{3}\)

= 84 x 8

= 672

645.

Find the angle between forces of magnitude 7N and 4N if their resultant has a magnitude of 9N.

A.

39.45°

B.

73.40°

C.

75.34°

D.

106.60°

Correct answer is B

\(F_{1} = 7i + 0j\)

\(F_{2} = (4\cos\theta)i + (4\sin\theta)j\)

\(9 = \sqrt{(7 + 4\cos\theta)^{2} + (4\sin\theta)^{2}}\)

\(9^{2} = (7 + 4\cos\theta)^{2} + (4\sin\theta)^{2} \implies 81 = 49 + 56\cos\theta + 16\cos^{2}\theta + 16\sin^{2}\theta\)

\(81 = 49 + 56\cos\theta + 16(\cos^{2}\theta + \sin^{2}\theta)\)

Recall, \(\cos^{2}\theta + \sin^{2}\theta = 1\)

\(81 = 49 + 56\cos\theta + 16 \implies 81 - 49 -16 = 56\cos\theta\)

\(16 = 56\cos\theta \implies \cos\theta = \frac{16}{56} = 0.2857\)

\(\theta = \cos^{-1} 0.2857  = 73.40°\)