\(\frac{8}{3}\)
\(\frac{7}{3}\)
\(\frac{5}{3}\)
2
Correct answer is A
\(\int_{-1}^{1} (x + 1)^{2}\mathrm {d} x \equiv \int_{-1}^{1} (x^{2} + 2x + 1)\mathrm {d} x\)
= \(\left. \frac{x^{3}}{3} + x^{2} + x \right |_{-1}^{1}\)
= \((\frac{1^{3}}{3} + 1^{2} + 1) - (\frac{(-1)^{3}}{3} + (-1)^{2} + (-1)) = \frac{7}{3} + \frac{1}{3} = \frac{8}{3}\)
Find the value of p for which \(x^{2} - x + p\) becomes a perfect square. ...
Given that \(x^{2} + 4x + k = (x + r)^{2} + 1\), find the value of k and r...
If \(y = \frac{1+x}{1-x}\), find \(\frac{dy}{dx}\)....
Given that \(P = \begin{pmatrix} y - 2 & y - 1 \\ y - 4 & y + 2 \end{pmatrix}\) and |P| = -2...
A binary operation ♦ is defined on the set R, of real numbers by \(a ♦ b = \fr...
If \(\begin{pmatrix} 3 & 2 \\ 7 & x \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \be...