\(\frac{8}{3}\)
\(\frac{7}{3}\)
\(\frac{5}{3}\)
2
Correct answer is A
\(\int_{-1}^{1} (x + 1)^{2}\mathrm {d} x \equiv \int_{-1}^{1} (x^{2} + 2x + 1)\mathrm {d} x\)
= \(\left. \frac{x^{3}}{3} + x^{2} + x \right |_{-1}^{1}\)
= \((\frac{1^{3}}{3} + 1^{2} + 1) - (\frac{(-1)^{3}}{3} + (-1)^{2} + (-1)) = \frac{7}{3} + \frac{1}{3} = \frac{8}{3}\)
If ( 1- 2x)\(^4\) = 1 + px + qx\(^2\) - 32x\(^3\) + 16\(^4\), find the value of (q - p)...
Face 1 2 3 4 5 6 Frequency 12 18 y 30 2y 45 Given the table above as t...
Differentiate \(\frac{x}{x + 1}\) with respect to x...
Evaluate \(\int_{\frac{1}{2}}^{1} \frac{x^{3} - 4}{x^{3}} \mathrm {d} x\)....
Simplify \(\frac{\sqrt{3}}{\sqrt{3} -1} + \frac{\sqrt{3}}{\sqrt{3} + 1}\)...
Given that \(\frac{1}{8^{2y - 3y}} = 2^{y + 2}\)....