Processing math: 53%
Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

656.

Given that y=x(x+1)2, calculate the maximum value of y.

A.

-2

B.

0

C.

1

D.

2

Correct answer is B

To find the maximum value, we can use the second derivative test where, given f(x), the second derivative < 0, makes it a maximum value.

x(x+1)2=x(x2+2x+1)=x3+2x2+x

dydx=3x2+4x+1=0

Solving, we have x=13 or 1.

d2ydx2=6x+4

When x=13,d2ydx2=2>0

When x=1,d2ydx2=2<0

At maximum value of x being -1, y=1(1+1)2=0

657.

Find the equation to the circle x2+y24x2y=0 at the point (1, 3).

A.

2y - x -5 = 0

B.

2y + x - 5 = 0

C.

2y + x + 5 = 0

D.

2y - x + 5 = 0

Correct answer is A

We are given the equation x2+y24x2y=0

y=x2+y24x2y

Using the method of implicit differentiation, 

dydx=2x+2ydydx42dydx

For the tangent, dydx=0,

(2y - 2)\frac{\mathrm d y}{\mathrm d x} = 4 - 2x \implies \frac{\mathrm d y}{\mathrm d x} = \frac{4 - 2x}{2y - 2}

At (1, 3), \frac{\mathrm d y}{\mathrm d x} = \frac{4 - 2(1)}{2(3) - 2} = \frac{2}{4} = \frac{1}{2}

Equation: \frac{y - 3}{x - 1} = \frac{1}{2} \implies 2y - 6 = x - 1

= 2y - x - 6 + 1 = 2y - x - 5 = 0

658.

Express \frac{13}{4}\pi radians in degrees.

A.

495°

B.

225°

C.

585°

D.

135°

Correct answer is C

180° = \pi radian

\frac{13}{4}\pi = \frac{13}{4} \times 180° = 585°

659.

If the determinant of the matrix \begin{pmatrix} 2 & x \\ 3 & 5 \end{pmatrix} = 13, find the value of x.

A.

-2

B.

-1

C.

1

D.

2

Correct answer is B

\begin{pmatrix} 2 & x \\ 3 & 5 \end{pmatrix} = 13

\begin{vmatrix} 2 & x \\ 3 & 5 \end{vmatrix} = (2 \times 5) - (3 \times x) = 13

10 - 3x = 13 \implies -3x = 3; x = -1

660.

In how many ways can the letters of the word 'ELECTIVE' be arranged?

A.

336

B.

1680

C.

6720

D.

20160

Correct answer is C

The word has 8 letters with one letter repeated 3 times, therefore we have:

\frac{8!}{3!} = 6720 ways.