Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

656.

The midpoint of M(4, -1) and N(x, y) is P(3, -4). Find the coordinates of N.

A.

(2, -3)

B.

(2, -7)

C.

(-1, -3)

D.

(-10, -7)

Correct answer is B

Given \(M(4, -1)\) and \(N(x, y)\) with midpoint \(P(3, -4)\).

\(\implies \frac{4 + x}{2} = 3; \frac{-1 + y}{2} = -4\)

\(\therefore x = 2; y = -7\)

N = (2, -7)

657.

Given that \(y = x(x + 1)^{2}\), calculate the maximum value of y.

A.

-2

B.

0

C.

1

D.

2

Correct answer is B

To find the maximum value, we can use the second derivative test where, given \(f(x)\), the second derivative < 0, makes it a maximum value.

\(x(x + 1)^{2} = x(x^{2} + 2x + 1) = x^{3} + 2x^{2} + x\)

\(\frac{\mathrm d y}{\mathrm d x} = 3x^{2} + 4x + 1 = 0\)

Solving, we have \( x = \frac{-1}{3}\) or \(-1\).

\(\frac{\mathrm d^{2} y}{\mathrm d x^{2}} = 6x + 4\)

When \(x = \frac{-1}{3}, \frac{\mathrm d^{2} y}{\mathrm d x^{2}} = 2 > 0\)

When \(x = -1, \frac{\mathrm d^{2} y}{\mathrm d x^{2}} = -2 < 0\)

At maximum value of x being -1, \(y = -1(-1 + 1)^{2} = 0\)

658.

Find the equation to the circle \(x^{2} + y^{2} - 4x - 2y = 0\) at the point (1, 3).

A.

2y - x -5 = 0

B.

2y + x - 5 = 0

C.

2y + x + 5 = 0

D.

2y - x + 5 = 0

Correct answer is A

We are given the equation \(x^{2} + y^{2} - 4x - 2y = 0\)

\(y = x^{2} + y^{2} - 4x - 2y \)

Using the method of implicit differentiation, 

\(\frac{\mathrm d y}{\mathrm d x} = 2x + 2y\frac{\mathrm d y}{\mathrm d x} - 4 - 2\frac{\mathrm d y}{\mathrm d x}\)

For the tangent, \(\frac{\mathrm d y}{\mathrm d x} = 0\),

\(\therefore 2x + 2y\frac{\mathrm d y}{\mathrm d x} - 4 - 2\frac{\mathrm d y}{\mathrm d x} = 0\)

\((2y - 2)\frac{\mathrm d y}{\mathrm d x} = 4 - 2x \implies \frac{\mathrm d y}{\mathrm d x} = \frac{4 - 2x}{2y - 2}\)

At (1, 3), \(\frac{\mathrm d y}{\mathrm d x} = \frac{4 - 2(1)}{2(3) - 2} = \frac{2}{4} = \frac{1}{2}\)

Equation: \(\frac{y - 3}{x - 1} = \frac{1}{2} \implies 2y - 6 = x - 1\)

= \(2y - x - 6 + 1 = 2y - x - 5 = 0\)

659.

Express \(\frac{13}{4}\pi\) radians in degrees.

A.

495°

B.

225°

C.

585°

D.

135°

Correct answer is C

\(180° = \pi radian\)

\(\frac{13}{4}\pi = \frac{13}{4} \times 180° = 585°\)

660.

If the determinant of the matrix \(\begin{pmatrix} 2 & x \\ 3 & 5 \end{pmatrix} = 13\), find the value of x.

A.

-2

B.

-1

C.

1

D.

2

Correct answer is B

\(\begin{pmatrix} 2 & x \\ 3 & 5 \end{pmatrix} = 13\)

\(\begin{vmatrix} 2 & x \\ 3 & 5 \end{vmatrix} = (2 \times 5) - (3 \times x) = 13\)

\(10 - 3x = 13 \implies -3x = 3; x = -1\)