Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

646.

A body of mass 28g, initially at rest is acted upon by a force, F Newtons. If it attains a velocity of \(5.4ms^{-1}\) in 18 seconds, find the value of F.

A.

0.0082N

B.

0.0084N

C.

0.082N

D.

0.084N

Correct answer is B

\(F = mass \times acceleration\) but \(accl = \frac{v - u}{t}\)

\(\therefore F = m(\frac{v - u}{t})\)

\(Mass = 28g = 0.028kg\)

\(v = 5.4 ms^{-1}; u = 0; t = 18secs\)

\(\therefore F = 0.028(\frac{5.4 - 0}{18}) = 0.028 \times 0.3 = 0.0084N\)

647.

If \(\overrightarrow{OX} = \begin{pmatrix} -7 \\ 6 \end{pmatrix}\) and \(\overrightarrow{OY} = \begin{pmatrix} 16 \\ -11 \end{pmatrix}\), find \(\overrightarrow{YX}\).

A.

\(\begin{pmatrix} 9 \\ -5 \end{pmatrix}\)

B.

\(\begin{pmatrix} -23 \\ -5 \end{pmatrix}\)

C.

\(\begin{pmatrix} 9 \\ 17 \end{pmatrix}\)

D.

\(\begin{pmatrix} -23 \\ 17 \end{pmatrix}\)

Correct answer is D

\(\overrightarrow{OY} \equiv -\overrightarrow{YO}\)

Also, \(\overrightarrow{YO} + \overrightarrow{OX} = \overrightarrow{YX}\)

\(\therefore \overrightarrow{YO} = -\overrightarrow{OY} = - \begin{pmatrix} 16 \\  -11  \end{pmatrix} = \begin{pmatrix} -16 \\ 11  \end{pmatrix}\)

\(\overrightarrow{YX} = \begin{pmatrix}  -16 \\ 11  \end{pmatrix}  + \begin{pmatrix}  -7  \\  6   \end{pmatrix}\)

= \(\begin{pmatrix}  -23  \\  17  \end{pmatrix}\)

648.

What is the probability of obtaining a head and a six when a fair coin and and a die are tossed together? 

A.

\(\frac{1}{12}\)

B.

\(\frac{1}{3}\)

C.

\(\frac{1}{2}\)

D.

\(\frac{2}{3}\)

Correct answer is D

\(\text{p(a head and a six)} = \text{p(a head)} + \text{p(a six)}\)

= \(\frac{1}{2} + \frac{1}{6} = \frac{2}{3}\).

 

 

Hint: Probability of A and B occurring should be greater than probability A or B happening.

649.

Given that \(a = i - 3j\) and \(b = -2i + 5j\) and \(c = 3i - j\), calculate \(|a - b + c|\).

A.

\(\sqrt{13}\)

B.

\(3\sqrt{13}\)

C.

\(6\sqrt{13}\)

D.

\(9\sqrt{13}\)

Correct answer is B

Given \(a = i - 3j; b = -2i + 5j; c = 3i - j\)

\(a- b + c = (1 - (-2) + 3)i + (-3 - 5 + (-1))j = 6i - 9j\)

\(|a - b + c| = \sqrt{6^{2} + (-9)^{2}} = \sqrt{36 + 81} = \sqrt{117}\)

\(= \sqrt{9 \times 13} = 3\sqrt{13}\)

650.

The marks scored by 4 students in Mathematics and Physics are ranked as shown in the table below

Mathematics 3 4 2 1
Physics 4 3 1 2

Calculate the Spearmann's rank correlation coefficient.

A.

0.2

B.

0.5

C.

0.6

D.

0.7

Correct answer is C

Maths (x) Rank \(r_{x}\) Physics (y) Rank \(r_{y}\) \(d = |r_{x} - r_{y}|\) \(d^{2}\)
3 2 4 1 1 1
4 1 3 2 1 1
2 3 1 4 1 1
1 4 2 3 1 1
Total         4

\(\rho = 1 - \frac{6\sum{d^{2}}}{n(n^{2} - 1)}\)

\( 1 - \frac{6 \times 4}{4(4^{2} - 1)} = 1 - \frac{24}{60}\)

= \(1 - 0.4 = 0.6\)