Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

631.

If (2t - 3s)(t - s) = 0, find \(\frac{t}{s}\)

A.

\(\frac{3}{2}\) or \(1\)

B.

\(\frac{3}{2}\) or \(-1\)

C.

\(\frac{-3}{2}\) or \(-1\)

D.

\(\frac{-3}{2}\) or \(1\)

Correct answer is A

\((2t - 3s)(t - s) = 0 \implies (2t - 3s) = \text{0 or} (t - s) = 0\)

\(2t - 3s = 0 \implies 2t = 3s \therefore \frac{t}{s} = \frac{3}{2}\)

\(t - s = 0 \implies t = s  \therefore  \frac{t}{s} = 1\)

\(\frac{t}{s} = \frac{3}{2} or 1\) 

632.

The remainder when \(x^{3}  - 2x + m\) is divided by \(x - 1\) is equal to the remainder when \(2x^{3} + x - m\) is divided by \(2x + 1\). Find the value of m.

A.

\(\frac{-7}{8}\)

B.

\(\frac{-3}{8}\)

C.

\(\frac{1}{8}\)

D.

\(\frac{5}{8}\)

Correct answer is C

The remainder theorem states that if f(x) is divided by (x - a), the remainder is f(a). 

\(f(x) = x^{3} - 2x + m\) divided by (x - 1), so that a = 1.

Remainder = \(f(1) = 1^3 - 2(1) + m = -1 + m\)

\(f(x) = 2x^{3} + x - m\) divided by (2x + 1), so that a = \(\frac{-1}{2}\)

\(f(\frac{-1}{2}) = 2(\frac{-1}{2}^{3}) + (\frac{-1}{2}) - m = \frac{-3}{4} - m\)

\(\implies m - 1 = \frac{-3}{4} - m\), collecting like terms,

\(2m = \frac{1}{4} \therefore m = \frac{1}{8}\)

633.

If the solution set of \(x^{2} + kx - 5 = 0\) is (-1, 5), find the value of k.

A.

-6

B.

-4

C.

4

D.

5

Correct answer is B

Given x = (-1, 5) for the equation \(x^{2} + kx - 5 = 0\)

\(x = -1 \implies x + 1 = 0\); \(x = 5 \implies x - 5 = 0\)

\((x + 1)(x - 5) = 0\), expanding,

\(x^{2} - 5x + x - 5 = 0   \therefore  x^{2} - 4x -  5 = 0\)

\(\therefore\) k = -4.

634.

Factorize completely: \(x^{2} + x^{2}y + 3x - 10y + 3xy - 10\).

A.

(x + 2)(x + 5)(y + 1)

B.

(x + 2)(x - 5)(y + 1)

C.

(x - 2)(x + 5)(y + 1)

D.

(x - 2)(x - 5)(y + 1)

Correct answer is C

\(x^{2} + x^{2}y + 3x - 10y + 3xy -10\)

= \(x^{2} + x^{2}y + 3x + 3xy - 10y - 10  = x^{2}(1 + y) + 3x(1 + y) - 10(y + 1)\)

= \((x^{2} + 3x - 10)(y + 1)\)

= \((x^{2} + 3x - 10) = x^{2} - 2x + 5x - 10\)

= \(x(x - 2) + 5(x - 2) = (x - 2)(x +5)\)

\(\therefore x^{2} + x^{2}y + 3x - 10y + 3xy -10 = (x - 2)(x + 5)(y + 1)\).

635.

If \(y = 4x - 1\), list the range of the domain \({-2 \leq x \leq 2}\), where x is an integer.

A.

{-9, -1, 2,3, 4}

B.

{-9, -2, 0, 1, 7}

C.

{-5, -4, -3, -2}

D.

{-9, -5, -1, 3, 7}

Correct answer is D

The elements of x are {-2, -1, 0, 1, 2}

\(y = 4x - 1\) = 4(-2) - 1 = -9; 4(-1) - 1 = -5; 4(0) - 1 = -1; 4(1) - 1 = 3; 4(2) - 1 = 7.

The range of x is {-9, -5, -1, 3 7}.