Calculate the standard deviation of 30, 29, 25, 28, 32 and 24.
2.0
2.8
3.0
3.2
Correct answer is B
\(x\) | \(x - \mu\) | \((x - \mu)^{2}\) |
24 | -4 | 16 |
25 | -3 | 9 |
28 | 0 | 0 |
29 | 1 | 1 |
30 | 2 | 4 |
32 | 4 | 16 |
\(\sum\) = 168 | 46 |
\(\mu = \frac{24+25+28+29+30+32}{6} = \frac{168}{8} = 28\)
\(S.D = \sqrt{\frac{\sum{(x - \mu)^{2}}}{n}} = \sqrt{\frac{46}{6}}\)
= \(\sqrt{7.67} \approxeq 2.8\)