If (x−5) is a factor of x3−4x2−11x+30, find the remaining factors.
(x+3)and(x−2)
(x−3)and(x+2)
(x−3)and(x−2)
(x+3)and(x+2)
Correct answer is A
(x - 5) is a factor of x3−4x2−11x+30. To find the remaining factors, let's draw out (x−5) from the parent expression.
x3−4x2−11x+30=x3−5x2+x2−5x−6x+30
=x2(x−5)+x(x−5)−6(x−5)=(x−5)(x2+x−6)
∴ To find the remaining factors, we factorize (x2+x−6)
x2+x−6=x2+3x−2x−6
=x(x+3)−2(x+3)=(x+3)(x−2)
∴ The other two factors are (x+3)and(x−2)
ALTERNATIVELY
∴ x^2 + x - 6 = (x + 3) and (x - 2)
In how many ways can four Mathematicians be selected from six ?
90
60
15
360
Correct answer is C
=^6C_4
=\frac{6!}{(4!\times2!)}
=\frac{6\times5}{2\times1}
= 15
-\frac{896x^6}{9}
-\frac{896x^5}{9}
-\frac{896x^5}{27}
-\frac{896x^6}{27}
Correct answer is C
rth term of a binomial expansion =^nC_r-1 a^{n-(r-1)}b^{r-1}
n = 10,r = 6 \therefore r-1=5
6th term =^{10}C_5 1^{10} - 5 (-\frac{2}{3}x)^5
=252*1*-\frac{32x^5}{243}=-\frac{896x^5}{27}
x^2+8x-15=0
x^2-2x-15=0
x^2-8x-15=0
x^2+2x+15=0
Correct answer is B
x^2-(sum of roots)x+(product of roots) = 0
4x^2-4x-15=0
Divide through by 4
=x^2-x-\frac{15}{4}=0
=x^2-x+(-\frac{15}{4})=0
=x^2-(1)x+(-\frac{15}{4})=0
sum of roots =1
= m + (m + 4) = 1
=2m+4=1
=2m=-3
=m=-\frac{3}{2}
The equation whose roots are 2m and 2m+8
2m=2×-\frac{3}{2}=-3and 2m+8=2×-\frac{3}{2}+8=5
=x^2-(-3+5)x+(-3)(5)=0
=x^2-2x+(-15)=0
∴x^2-2x-15=0
-2,\frac{3}{2}
2,\frac{3}{2}
-2,-\frac{3}{2}
2-,\frac{3}{2}
Correct answer is B
p = \begin{bmatrix} x&4\\3&7\end{bmatrix}, Q =\begin{bmatrix} x&3\\1&2x\end{bmatrix}
p = \begin{bmatrix} x&4\\3&7\end{bmatrix}=7x-12, Q =\begin{bmatrix} x&3\\1&2x\end{bmatrix}=2x^2-3
|Q| = |P| + 3 (Given)