Processing math: 24%

WAEC Further Mathematics Past Questions & Answers

1.

If (x5) is a factor of x34x211x+30, find the remaining factors.

A.

(x+3)and(x2)

B.

(x3)and(x+2)

C.

(x3)and(x2)

D.

(x+3)and(x+2)

Correct answer is A

(x - 5) is a factor of x34x211x+30. To find the remaining factors, let's draw out (x5) from the parent expression.

x34x211x+30=x35x2+x25x6x+30

=x2(x5)+x(x5)6(x5)=(x5)(x2+x6)

∴ To find the remaining factors, we factorize (x2+x6)

x2+x6=x2+3x2x6

=x(x+3)2(x+3)=(x+3)(x2)

∴ The other two factors are (x+3)and(x2)

ALTERNATIVELY
∴ x^2 + x - 6 = (x + 3) and (x - 2)

2.

In how many ways can four Mathematicians be selected from six ?

A.

90

B.

60

C.

15

D.

360

Correct answer is C

=^6C_4

=\frac{6!}{(4!\times2!)}

=\frac{6\times5}{2\times1}

= 15

3.

Find the coefficient of the 6^{th}term in the binomial expansion of (1 - \frac{2x}{3})10 in ascending powers of x.

A.

-\frac{896x^6}{9}

B.

-\frac{896x^5}{9}

C.

-\frac{896x^5}{27}

D.

-\frac{896x^6}{27}

Correct answer is C

rth term of a binomial expansion =^nC_r-1 a^{n-(r-1)}b^{r-1}

n = 10,r = 6 \therefore r-1=5

6th term =^{10}C_5 1^{10} - 5 (-\frac{2}{3}x)^5

=252*1*-\frac{32x^5}{243}=-\frac{896x^5}{27}

4.

If m and ( m + 4) are the roots of 4x^2 - 4x - 15 = 0, find the equation whose roots are 2 m and (2 m + 8)

A.

x^2+8x-15=0

B.

x^2-2x-15=0

C.

x^2-8x-15=0

D.

x^2+2x+15=0

Correct answer is B

x^2-(sum of roots)x+(product of roots) = 0

4x^2-4x-15=0

Divide through by 4

=x^2-x-\frac{15}{4}=0

=x^2-x+(-\frac{15}{4})=0

=x^2-(1)x+(-\frac{15}{4})=0

sum of roots =1

= m + (m + 4) = 1
=2m+4=1

=2m=-3

=m=-\frac{3}{2}

The equation whose roots are 2m and 2m+8

2m=2×-\frac{3}{2}=-3and 2m+8=2×-\frac{3}{2}+8=5

=x^2-(-3+5)x+(-3)(5)=0

=x^2-2x+(-15)=0

∴x^2-2x-15=0

5.

Given that p = \begin{bmatrix} x&4\\3&7\end{bmatrix} Q =\begin{bmatrix} x&3\\1&2x\end{bmatrix} and the determinant of Q is three more than that of P , find the values of x

A.

-2,\frac{3}{2}

B.

2,\frac{3}{2}

C.

-2,-\frac{3}{2}

D.

2-,\frac{3}{2}

Correct answer is B

p = \begin{bmatrix} x&4\\3&7\end{bmatrix}, Q =\begin{bmatrix} x&3\\1&2x\end{bmatrix}

p = \begin{bmatrix} x&4\\3&7\end{bmatrix}=7x-12, Q =\begin{bmatrix} x&3\\1&2x\end{bmatrix}=2x^2-3

|Q| = |P| + 3 (Given)