Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

551.

If \(2, (k+1), 8,...\) form an exponential sequence (GP), find the values of k

A.

-3 and 5

B.

5 and -5

C.

3 and -3

D.

-5 and 3

Correct answer is D

Given an exponential sequence, say \(a, b, c,...\), as consecutive terms, then \(\sqrt{a \times c} = b\).

\(\therefore 2, (k+1), 8 \implies \sqrt{2 \times 8} = k + 1\)

\(k + 1 = \pm{4} \implies k = \text{-5 or 3}\)

552.

If \((x + 2)\) and \((3x - 1)\) are factors of \(6x^{3} + x^{2} - 19x + 6\), find the third factor.

A.

\(2x - 3\)

B.

\(3x + 1\)

C.

\(x - 2\)

D.

\(3x + 2\)

Correct answer is A

To get the third factor, take the product of the other 2 factors and then divide the main equation by their product.

553.

Using the binomial expansion \((1+x)^{6} = 1 + 6x + 15x^{2} + 20x^{3} + 15x^{4} + 6x^{5} + x^{6}\), find, correct to 3 dp, the value of \((1.98)^{6}\)

A.

64.245

B.

61.255

C.

60.255

D.

60.245

Correct answer is C

\((1.98)^{6} = (1 + 0.98)^{6} = 1 + 6(0.98) + 15(0.98)^{2} + 20(0.98)^{3} + 15(0.98)^{4} + 6(0.98)^{5} + (0.98)^{6}\)

 \(\approxeq 1 + 5.88 + 14.406 + 18.823 + 13.836 + 5.424 + 0.886 \)

= \(60.255\)

554.

Simplify \(\frac{1 + \sqrt{8}}{3 - \sqrt{2}}\)

A.

\(7 + \sqrt{2}\)

B.

\(7 + 7\sqrt{2}\)

C.

\(1 - 7\sqrt{2}\)

D.

\(1 + \sqrt{2}\)

Correct answer is D

\(\frac{1 + \sqrt{8}}{3 - \sqrt{2}}\)

Rationalizing by multiplying through with \(3 + \sqrt{2}\),

\((\frac{1 + \sqrt{8}}{3 - \sqrt{2}})(\frac{3 + \sqrt{2}}{3 + \sqrt{2}}) = \frac{3 + \sqrt{2} + 3\sqrt{8} + 4}{9 - 2}\)

= \(\frac{3 + \sqrt{2} + 3\sqrt{4 \times 2} + 4}{7} \)

= \(\frac{7 + 7\sqrt{2}}{7} = 1 + \sqrt{2}\)

555.

If \(8^{x} ÷ (\frac{1}{4})^{y} = 1\) and \(\log_{2}(x - 2y) = 1\), find the value of (x - y)

A.

\(\frac{5}{4}\)

B.

\(\frac{3}{5}\)

C.

\(1\)

D.

\(\frac{2}{3}\)

Correct answer is A

\(8^{x} ÷ (\frac{1}{4})^{y} = 1\)

\((2^{3})^{x} ÷ (2^{-2})^{y} = 2^{0}\)

\(2^{3x - (-2y)} = 2^{0}\)

\(\implies 3x + 2y = 0 .... (1)\)

\(\log_{2}(x - 2y) = 1\)

\( x - 2y = 2^{1} = 2 ..... (2)\)

Solving equations 1 and 2,

\(x = \frac{1}{2}, y = \frac{-3}{4}\)

\((x - y) = \frac{1}{2} - \frac{-3}{4} = \frac{5}{4}\)