Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.
45
54
56
65
Correct answer is B
\(T_{n} = a + (n - 1)d\)
\(380 = 9 + (n - 1)7\)
\(380 = 9 + 7n - 7 \implies 380 = 2 + 7n\)
\(7n = 380 - 2 = 378 \therefore n = \frac{378}{7} = 54\)
Find the equation of a circle with centre (2, -3) and radius 2 units.
\(x^{2} + y^{2} - 4x + 6y + 9 = 0\)
\(x^{2} + y^{2} + 4x - 6y - 9 = 0\)
\(x^{2} + y^{2} + 4x + 6y - 9 = 0\)
\(x^{2} + y^{2} + 4x - 6y + 9 = 0\)
Correct answer is A
The equation of a circle with centre coordinate (a, b) and radius r is :
\((x - a)^{2} + (y - b)^{2} = r^{2}\)
Given centre = (2, -3) and radius r = 2 units
Equation = \((x - 2)^{2} + (y - (-3))^{2} = 2^{2}\)
\(x^{2} - 4x + 4 + y^{2} + 6y + 9 = 4\)
\(x^{2} + y^{2} - 4x + 6y + 4 + 9 - 4 = 0 \implies x^{2} + y^{2} - 4x + 6y + 9 = 0\)
3
2
-2
-3
Correct answer is D
The sum of deviations from the mean of a set of numbers equals 0.
\((k+3)^{2} + (k+7) + (-2) + k + (k+2)^{2} = 0\)
\((k^2 + 6k + 9) + (k+7) - 2 + k + (k^2 + 4k + 4) = 0\)
\(2k^{2} + 12k + 18 = 0\)
\(2k^{2} + 6k + 6k + 18 = 2k(k + 3) + 6(k + 3) = 0\)
\(k = -3 (twice)\)
\(-45(2i + \sqrt{2}j)\)
\(60(\sqrt{3}i + 7j)\)
\(30(7i + \sqrt{3}j)\)
\(-15(7i + \sqrt{3}j)\)
Correct answer is D
\(F = F\cos\theta + F\sin\theta\)
\(\implies 90N = 90\cos 120° + 90\sin 120°\)
\(120N = 120 \cos 240° + 120 \sin 240°\)
\(R = F_{1} + F_{2} \)
= \((90 \cos 120 + 120 \cos 240)i + (90\sin 120 + 120 \sin 240)j\)
= \(90(-0.5) + 120(-0.5))i + (90(\frac{\sqrt{3}}{2}) + (120(-\frac{\sqrt{3}}{2}))j\)
= \(-105i - 15\sqrt{3}j = -15(7i + \sqrt{3}j)\)
If a fair coin is tossed four times, what is the probability of obtaining at least one head?
\(\frac{1}{2}\)
\(\frac{1}{4}\)
\(\frac{13}{16}\)
\(\frac{15}{16}\)
Correct answer is D
P(at least one head) = 1 - P(4 tails)
Let \(p = \frac{1}{2}\) = probability of head and \(q = \frac{1}{2}\) = probability of tail.
\((p + q)^{4} = p^{4} + 4p^{3}q + 6p^{2}q^{2} + 4pq^{3} + q^{4}\)
P(4 tails) = \(q^{4} = (\frac{1}{2})^{4} = \frac{1}{16}\)
P(at least one head) = \(1 - \frac{1}{16} = \frac{15}{16}\)