Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

531.

The first term of a linear sequence is 9 and the common difference is 7. If the nth term is 380, find the value of n.

A.

45

B.

54

C.

56

D.

65

Correct answer is B

\(T_{n} = a + (n - 1)d\)

\(380 = 9 + (n - 1)7\)

\(380 = 9 + 7n - 7 \implies 380 = 2 + 7n\)

\(7n = 380 - 2 = 378 \therefore n = \frac{378}{7} = 54\)

532.

Find the equation of a circle with centre (2, -3) and radius 2 units.

A.

\(x^{2} + y^{2} - 4x + 6y + 9 = 0\)

B.

\(x^{2} + y^{2} + 4x - 6y - 9 = 0\)

C.

\(x^{2} + y^{2} + 4x + 6y - 9 = 0\)

D.

\(x^{2} + y^{2} + 4x - 6y + 9 = 0\)

Correct answer is A

The equation of a circle with centre coordinate (a, b) and radius r is :

\((x - a)^{2} + (y - b)^{2} = r^{2}\)

Given centre = (2, -3) and radius r = 2 units

Equation = \((x - 2)^{2} + (y - (-3))^{2} = 2^{2}\)

\(x^{2} - 4x + 4 + y^{2} + 6y + 9 = 4\)

\(x^{2} + y^{2} - 4x + 6y + 4 + 9 - 4 = 0 \implies x^{2} + y^{2} - 4x + 6y + 9 = 0\)

533.

The deviations from the mean of a set of numbers are \((k+3)^{2}, (k+7), -2, \text{k and (} k+2)^{2}\), where k is a constant. Find the value of k.

A.

3

B.

2

C.

-2

D.

-3

Correct answer is D

The sum of deviations from the mean of a set of numbers equals 0.

\((k+3)^{2} + (k+7) + (-2) + k + (k+2)^{2} = 0\)

\((k^2 + 6k + 9) + (k+7) - 2 + k + (k^2 + 4k + 4) = 0\)

\(2k^{2} + 12k + 18 = 0\)

\(2k^{2} + 6k + 6k + 18 = 2k(k + 3) + 6(k + 3) = 0\)

\(k = -3 (twice)\)

534.

Forces 90N and 120N act in the directions 120° and 240° respectively. Find the resultant of these forces.

A.

\(-45(2i + \sqrt{2}j)\)

B.

\(60(\sqrt{3}i + 7j)\)

C.

\(30(7i + \sqrt{3}j)\)

D.

\(-15(7i + \sqrt{3}j)\)

Correct answer is D

\(F = F\cos\theta + F\sin\theta\)

\(\implies 90N = 90\cos 120° + 90\sin 120°\)

\(120N = 120 \cos 240° + 120 \sin 240°\)

\(R = F_{1} + F_{2} \)

= \((90 \cos 120 + 120 \cos 240)i + (90\sin 120 + 120 \sin 240)j\)

= \(90(-0.5) + 120(-0.5))i + (90(\frac{\sqrt{3}}{2}) + (120(-\frac{\sqrt{3}}{2}))j\)

= \(-105i - 15\sqrt{3}j = -15(7i + \sqrt{3}j)\)

535.

If a fair coin is tossed four times, what is the probability of obtaining at least one head?

A.

\(\frac{1}{2}\)

B.

\(\frac{1}{4}\)

C.

\(\frac{13}{16}\)

D.

\(\frac{15}{16}\)

Correct answer is D

P(at least one head) = 1 - P(4 tails)

Let \(p = \frac{1}{2}\) = probability of head and \(q = \frac{1}{2}\) = probability of tail.

\((p + q)^{4} = p^{4} + 4p^{3}q + 6p^{2}q^{2} + 4pq^{3} + q^{4}\)

P(4 tails) = \(q^{4} = (\frac{1}{2})^{4} = \frac{1}{16}\)

P(at least one head) = \(1 - \frac{1}{16} = \frac{15}{16}\)