Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.
If T=(−2−538), find T−1, the inverse of T.
(−8−532)
(−8−53−2)
(−8−5−32)
(−8−5−3−2)
Correct answer is A
Let (abcd)=T−1
T.T−1=I
(−2−538)(abcd)=(1001)
⟹−2a−5c=1
−2b−5d=0⟹b=−5d2
3a+8c=0⟹a=−8c3
3b+8d=1
−2(−8c3)−5c=16c3−5c=c3=1⟹c=3
3(−5d2)+8d=−15d2+8d=d2=1⟹d=2
b=−5×22=−5
a=−8×33=−8
∴
Find the derivative of \sqrt[3]{(3x^{3} + 1} with respect to x.
\frac{3x}{3(3x^{3} + 1)}
\frac{3x^{2}}{\sqrt[3]{(3x^{3} + 1)^{2}}}
\frac{3x}{\sqrt[3]{3x^{2} + 1}}
\frac{3x^{2}}{3(3x^{2} + 1)^{2}}
Correct answer is B
y = \sqrt[3]{3x^{3} + 1} = (3x^{3} + 1)^{\frac{1}{3}}
Let u = 3x^{3} + 1; y = u^{\frac{1}{3}}
\frac{\mathrm d y}{\mathrm d x} = (\frac{\mathrm d y}{\mathrm d u})(\frac{\mathrm d u}{\mathrm d x})
\frac{\mathrm d y}{\mathrm d u} = \frac{1}{3}u^{\frac{-2}{3}}
\frac{\mathrm d u}{\mathrm d x} = 9x^{2}
\frac{\mathrm d y}{\mathrm d x} = (\frac{1}{3}(3x^{3} + 1)^{\frac{-2}{3}})(9x^{2})
= \frac{3x^{2}}{\sqrt[3]{(3x^{3} + 1)^{2}}}
If \frac{x + P}{(x - 1)(x - 3)} = \frac{Q}{x - 1} + \frac{2}{x - 3}, find the value of (P + Q)
-2
-1
0
1
Correct answer is C
\frac{x + P}{(x-1)(x-3)} = \frac{Q}{x-1} + \frac{2}{x-3}
\frac{x + P}{(x-1)(x-3)} = \frac{Q(x-3) + 2(x-1)}{(x-1)(x-3)}
Comparing LHS and RHS of the equation, we have
x + P = Qx - 3Q + 2x -2
P = -3Q - 2
Q + 2 = 1 \implies Q = 1 - 2 = -1
P = -3(-1) - 2 = 3 - 2 = 1
P + Q = 1 + (-1) = 0
5
6
8
10
Correct answer is D
p(blue) = \frac{\text{no of blue balls}}{\text{total no of balls}}
= \frac{2}{3} = \frac{k}{k + 5}
3k = 2(k + 5) \implies 3k = 2k + 10
3k - 2k = k = 10
If 2, (k+1), 8,... form an exponential sequence (GP), find the values of k
-3 and 5
5 and -5
3 and -3
-5 and 3
Correct answer is D
Given an exponential sequence, say a, b, c,..., as consecutive terms, then \sqrt{a \times c} = b.
\therefore 2, (k+1), 8 \implies \sqrt{2 \times 8} = k + 1
k + 1 = \pm{4} \implies k = \text{-5 or 3}