Processing math: 34%
Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

546.

If T=(2538), find T1, the inverse of T.

A.

(8532)

B.

(8532)

C.

(8532)

D.

(8532)

Correct answer is A

Let (abcd)=T1

T.T1=I

(2538)(abcd)=(1001)

2a5c=1

2b5d=0b=5d2

3a+8c=0a=8c3

3b+8d=1

2(8c3)5c=16c35c=c3=1c=3

3(5d2)+8d=15d2+8d=d2=1d=2

b=5×22=5

a=8×33=8

547.

Find the derivative of \sqrt[3]{(3x^{3} + 1} with respect to x.

A.

\frac{3x}{3(3x^{3} + 1)}

B.

\frac{3x^{2}}{\sqrt[3]{(3x^{3} + 1)^{2}}}

C.

\frac{3x}{\sqrt[3]{3x^{2} + 1}}

D.

\frac{3x^{2}}{3(3x^{2} + 1)^{2}}

Correct answer is B

y = \sqrt[3]{3x^{3} + 1}  = (3x^{3} + 1)^{\frac{1}{3}}

Let u = 3x^{3} + 1; y = u^{\frac{1}{3}}

\frac{\mathrm d y}{\mathrm d x} = (\frac{\mathrm d y}{\mathrm d u})(\frac{\mathrm d u}{\mathrm d x})

\frac{\mathrm d y}{\mathrm d u} = \frac{1}{3}u^{\frac{-2}{3}}

\frac{\mathrm d u}{\mathrm d x} = 9x^{2}

\frac{\mathrm d y}{\mathrm d x} = (\frac{1}{3}(3x^{3} + 1)^{\frac{-2}{3}})(9x^{2})

= \frac{3x^{2}}{\sqrt[3]{(3x^{3} + 1)^{2}}} 

548.

If \frac{x + P}{(x - 1)(x - 3)} = \frac{Q}{x - 1} + \frac{2}{x - 3}, find the value of (P + Q)

A.

-2

B.

-1

C.

0

D.

1

Correct answer is C

\frac{x + P}{(x-1)(x-3)} = \frac{Q}{x-1} + \frac{2}{x-3}

\frac{x + P}{(x-1)(x-3)} = \frac{Q(x-3) + 2(x-1)}{(x-1)(x-3)}

Comparing LHS and RHS of the equation, we have

x + P = Qx - 3Q + 2x -2

P = -3Q - 2

Q + 2 = 1 \implies Q = 1 - 2 = -1

P = -3(-1) - 2 = 3 - 2 = 1

P + Q = 1 + (-1) = 0

549.

A box contains 5 red and k blue balls. A ball is selected at random from the box. If the probability of selecting a blue ball is \frac{2}{3}, find the value of k

A.

5

B.

6

C.

8

D.

10

Correct answer is D

p(blue) = \frac{\text{no of blue balls}}{\text{total no of balls}}

= \frac{2}{3} = \frac{k}{k + 5}

3k = 2(k + 5)  \implies 3k = 2k + 10

3k - 2k = k = 10

550.

If 2, (k+1), 8,... form an exponential sequence (GP), find the values of k

A.

-3 and 5

B.

5 and -5

C.

3 and -3

D.

-5 and 3

Correct answer is D

Given an exponential sequence, say a, b, c,..., as consecutive terms, then \sqrt{a \times c} = b.

\therefore 2, (k+1), 8 \implies \sqrt{2 \times 8} = k + 1

k + 1 = \pm{4} \implies k = \text{-5 or 3}