-67
-61
61
67
Correct answer is A
\(f(x) = 3x^{3} + 8x^{2} + 6x + k\)
\(f(2) = 3(2^{3}) + 8(2^{2}) + 6(2) + k = 1\)
\(\implies 24 + 32 + 12 + k = 1\)
\(68 + k = 1 \therefore k = 1 - 68 = -67\)
Find correct to the nearest degree,5 the angle between p = 12i - 5j and q = 4i +3j...
If \(f(x) = 2x^{2} - 3x - 1\), find the value of x for which f(x) is minimum....
Given that \(\tan x = \frac{5}{12}\), and \(\tan y = \frac{3}{4}\), Find \(\tan (x + y)\)....
If \(T = \begin{pmatrix} -2 & -5 \\ 3 & 8 \end{pmatrix}\), find \(T^{-1}\), the inverse of T...
Express \(\frac{x^{2} + x + 4}{(1 - x)(x^{2} + 1)}\) in partial fractions....