\(7 + \sqrt{2}\)
\(7 + 7\sqrt{2}\)
\(1 - 7\sqrt{2}\)
\(1 + \sqrt{2}\)
Correct answer is D
\(\frac{1 + \sqrt{8}}{3 - \sqrt{2}}\)
Rationalizing by multiplying through with \(3 + \sqrt{2}\),
\((\frac{1 + \sqrt{8}}{3 - \sqrt{2}})(\frac{3 + \sqrt{2}}{3 + \sqrt{2}}) = \frac{3 + \sqrt{2} + 3\sqrt{8} + 4}{9 - 2}\)
= \(\frac{3 + \sqrt{2} + 3\sqrt{4 \times 2} + 4}{7} \)
= \(\frac{7 + 7\sqrt{2}}{7} = 1 + \sqrt{2}\)
Evaluate \(\frac{\tan 120° + \tan 30°}{\tan 120° - \tan 60°}\)...
Given that \(p = \begin{bmatrix} x&4\\3&7\end{bmatrix} Q =\begin{bmatrix} x&3\\1&2x\...
Age in years 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 Frequency 6 8 14 10 12 ...
Differentiate \(\frac{x}{x + 1}\) with respect to x...
Find the number of different arrangements of the word IKOTITINA. ...