\(7 + \sqrt{2}\)
\(7 + 7\sqrt{2}\)
\(1 - 7\sqrt{2}\)
\(1 + \sqrt{2}\)
Correct answer is D
\(\frac{1 + \sqrt{8}}{3 - \sqrt{2}}\)
Rationalizing by multiplying through with \(3 + \sqrt{2}\),
\((\frac{1 + \sqrt{8}}{3 - \sqrt{2}})(\frac{3 + \sqrt{2}}{3 + \sqrt{2}}) = \frac{3 + \sqrt{2} + 3\sqrt{8} + 4}{9 - 2}\)
= \(\frac{3 + \sqrt{2} + 3\sqrt{4 \times 2} + 4}{7} \)
= \(\frac{7 + 7\sqrt{2}}{7} = 1 + \sqrt{2}\)
Solve \(x^{2} - 2x - 8 > 0\)....
Evaluate \(\int_{0}^{2} (8x - 4x^{2}) \mathrm {d} x\)....
Find the coefficient of x\(^2\)in the binomial expansion of \((x + \frac{2}{x^2})^5\)...
Simplify \(\frac{1 + \sqrt{8}}{3 - \sqrt{2}}\)...
A particle is acted upon by two forces 6N and 3N inclined at an angle of 120° to each other. Fin...