Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

541.

Age in years 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34
Frequency 6 8 14 10 12

Find the mean of the distribution.

A.

23.4

B.

23.6

C.

24.3

D.

24.6

Correct answer is B

Age in years

Classmark

(x)

Frequency

(f)

fx
10 - 14 12 6 72
15 - 19 17 8 136
20 - 24 22 14 308
25 - 29 27 10 270
30 - 34 32 12 384
Total   50 1170

\(Mean = \frac{\sum fx}{\sum f}\)

= \(\frac{1170}{50} = 23.4\)

542.

Age in years 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34
Frequency 6 8 14 10 12

 

In which group is the upper quartile?

A.

15 - 19

B.

20 - 24

C.

25 - 29

D.

30 - 34

Correct answer is C

The upper quartile occurs at the \(\frac{3N}{4}\) position.

= \(\frac{3 \times 50}{4} = 37.5\)

This occurs in the class 25 - 29.

543.

Age in years 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34
Frequency 6 8 14 10 12

What is the class mark of the median class?

A.

17

B.

22

C.

27

D.

32

Correct answer is B

\(\text{Total frequency} = 50\)

Median occurs at \(\frac{50}{2} = \text{25th position}\)

= Class 20 - 24 with classmark \(\frac{20 + 24}{2} = 22\)

544.

The radius of a sphere is increasing at a rate \(3cm s^{-1}\). Find the rate of increase in the surface area, when the radius is 2cm. 

A.

\(8\pi cm^{2}s^{-1}\)

B.

\(16\pi cm^{2}s^{-1}\)

C.

\(24\pi cm^{2}s^{-1}\)

D.

\(48\pi cm^{2}s^{-1}\)

Correct answer is D

Surface area of sphere, \( A = 4\pi r^{2}\)

\(\frac{\mathrm d A}{\mathrm d r} = 8\pi r\)

The rate of change of radius with time \(\frac{\mathrm d r}{\mathrm d t} = 3cm s^{-1}\)

\(\frac{\mathrm d A}{\mathrm d t} = (\frac{\mathrm d A}{\mathrm d r})(\frac{\mathrm d r}{\mathrm d t})\)

= \(8\pi \times 2cm \times 3cm s^{-1} = 48\pi cm^{2}s^{-1}\)

545.

A function is defined by \(h : x \to 2 - \frac{1}{2x - 3}, x \neq \frac{3}{2}\). Find \(h^{-1}(\frac{1}{2})\).

A.

\(6\)

B.

\(\frac{11}{6}\)

C.

\(\frac{11}{4}\)

D.

\(\frac{5}{3}\)

Correct answer is B

\(h : x \to 2 - \frac{1}{2x - 3}\)

\(h(x) = \frac{2(2x - 3) - 1}{2x - 3} = \frac{4x - 7}{2x - 3}\)

Let x = h(y)

\(x = \frac{4y - 7}{2y - 3}\)

\(x(2y - 3) = 4y - 7  \implies 2xy - 4y = 3x - 7\)

\(y = \frac{3x - 7}{2x - 4}\)

\(h^{-1}(x) = \frac{3x - 7}{2x - 4}\)

\(\therefore  h^{-1}(\frac{1}{2}) = \frac{3(\frac{1}{2}) - 7}{2(\frac{1}{2}) - 4}\)

= \(\frac{\frac{-11}{2}}{-3} = \frac{11}{6}\)