\(\frac{3x}{3(3x^{3} + 1)}\)
\(\frac{3x^{2}}{\sqrt[3]{(3x^{3} + 1)^{2}}}\)
\(\frac{3x}{\sqrt[3]{3x^{2} + 1}}\)
\(\frac{3x^{2}}{3(3x^{2} + 1)^{2}}\)
Correct answer is B
\(y = \sqrt[3]{3x^{3} + 1} = (3x^{3} + 1)^{\frac{1}{3}}\)
Let u = \(3x^{3} + 1\); y = \(u^{\frac{1}{3}}\)
\(\frac{\mathrm d y}{\mathrm d x} = (\frac{\mathrm d y}{\mathrm d u})(\frac{\mathrm d u}{\mathrm d x})\)
\(\frac{\mathrm d y}{\mathrm d u} = \frac{1}{3}u^{\frac{-2}{3}}\)
\(\frac{\mathrm d u}{\mathrm d x} = 9x^{2}\)
\(\frac{\mathrm d y}{\mathrm d x} = (\frac{1}{3}(3x^{3} + 1)^{\frac{-2}{3}})(9x^{2})\)
= \(\frac{3x^{2}}{\sqrt[3]{(3x^{3} + 1)^{2}}}\)
g(x) = 2x + 3 and f(x) = 3x\(^2\) - 2x + 4 find f {g (-3)}....
If \(B = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}\), find \(B^{-...
If \(T = \begin{pmatrix} -2 & -5 \\ 3 & 8 \end{pmatrix}\), find \(T^{-1}\), the inverse of T...
Express 75° in radians, leaving your answer in terms of \(\pi\)....
The sum, \(S_{n}\), of a sequence is given by \(S_{n} = 2n^{2} - 5\). Find the 6th term...
\(f(x) = p + qx\), where p and q are constants. If f(1) = 7 and f(5) = 19, find f(3)....
Express \(\frac{7\pi}{6}\) radians in degrees....
Find the axis of symmetry of the curve \(y = x^{2} - 4x - 12\)....