\(\begin{pmatrix} -8 & -5 \\ 3 & 2 \end{pmatrix}\)
\(\begin{pmatrix} -8 & -5 \\ 3 & -2 \end{pmatrix}\)
\(\begin{pmatrix} -8 & -5 \\ -3 & 2 \end{pmatrix}\)
\(\begin{pmatrix} -8 & -5 \\ -3 & -2 \end{pmatrix}\)
Correct answer is A
Let \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} = T^{-1}\)
\(T . T^{-1} = I\)
\(\begin{pmatrix} -2 & -5 \\ 3 & 8 \end{pmatrix}\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)
\(\implies -2a - 5c = 1\)
\(-2b - 5d = 0 \implies b = \frac{-5d}{2}\)
\(3a + 8c = 0 \implies a = \frac{-8c}{3}\)
\(3b + 8d = 1\)
\(-2(\frac{-8c}{3}) - 5c = \frac{16c}{3} - 5c = \frac{c}{3} = 1 \implies c = 3\)
\(3(\frac{-5d}{2}) + 8d = \frac{-15d}{2} + 8d = \frac{d}{2} = 1 \implies d = 2\)
\(b = \frac{-5 \times 2}{2} = -5\)
\(a = \frac{-8 \times 3}{3} = -8\)
\(\therefore T^{-1} = \begin{pmatrix} -8 & -5 \\ 3 & 2 \end{pmatrix}\)
If the midpoint of the line joining (1 - k, -4) and (2, k + 1) is (-k, k), find the value of k. ...
Find the gradient to the normal of the curve \(y = x^{3} - x^{2}\) at the point where x = 2....
Express \(\frac{13}{4}\pi\) radians in degrees....
Simplify \(\frac{1}{3}\) log8 + \(\frac{1}{3}\) log 64 - 2 log6...
Which of the following binary operations is not commutative? ...
If \(\begin{vmatrix} 4 & x \\ 5 & 3 \end{vmatrix} = 32\), find the value of x....
Simplify \(\frac{\log_{5} 8}{\log_{5} \sqrt{8}}\)....
The length of the line joining points (x,4) and (-x,3) is 7 units. Find the value of x. ...