Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

521.

Express (14N, 240°) as a column vector.

A.

\(\begin{pmatrix} -7 \\ -7\sqrt{3} \end{pmatrix}\)

B.

\(\begin{pmatrix} 7\sqrt{3} \\ 7\sqrt{3} \end{pmatrix}\)

C.

\(\begin{pmatrix} -7\sqrt{3} \\ -7 \end{pmatrix}\)

D.

\(\begin{pmatrix} 7 \\ -7\sqrt{3} \end{pmatrix}\)

Correct answer is A

\(F = \begin{pmatrix} F_{x} \\ F_{y} \end{pmatrix} = \begin{pmatrix} F\cos \theta \\ F\sin \theta \end{pmatrix}\)

\((14N, 240°) = \begin{pmatrix} 14\cos 240 \\ 14\sin 240 \end{pmatrix}\)

= \(\begin{pmatrix} 14 \times -0.5 \\ 14 \times \frac{-\sqrt{3}}{2} \end{pmatrix}\)

= \(\begin{pmatrix} -7 \\ -7\sqrt{3} \end{pmatrix}\)

522.

Evaluate \(\frac{\tan 120° + \tan 30°}{\tan 120° - \tan 60°}\)

A.

\(\sqrt{3} + \sqrt{2}\)

B.

\(\frac{2}{3}\)

C.

\(\frac{1}{3}\)

D.

\(-2\sqrt{3}\)

Correct answer is C

No explanation has been provided for this answer.

523.

Find \(\lim\limits_{x \to 3} (\frac{x^{3} + x^{2} - 12x}{x^{2} - 9})\)

A.

\(\frac{7}{2}\)

B.

\(0\)

C.

\(\frac{-7}{2}\)

D.

\(-7\)

Correct answer is A

\(\lim\limits_{x \to 3} (\frac{x^{3} + x^{2} - 12x}{x^{2} - 9}) = \lim\limits_{x \to 3} (\frac{x^{3} - 3x^{2} + 4x^{2} - 12x}{(x - 3)(x + 3)}\)

\(\lim\limits_{x \to 3} (\frac{(x^{2} + 4x)(x - 3)}{(x - 3)(x + 3)} = \lim\limits_{x \to 3} (\frac{x^{2} + 4x}{x + 3})\)

=\(\frac{3^{2} + 4(3)}{3 + 3} = \frac{21}{6} = \frac{7}{2}\)

524.

Find the distance between the points (2, 5) and (5, 9).

A.

4 units

B.

5 units

C.

12 units

D.

14 units

Correct answer is B

Distance between two points (a, b) and (c, d) = \(\sqrt{(d - b)^{2} + (c - a)^{2}}

Distance between (2, 5) and (5, 9) = \(\sqrt{(9-5)^{2} + (5-2)^{2}}\)

= \(\sqrt{16 + 9} = \sqrt{25} = 5 units\)

525.

A ball is thrown vertically upwards with a velocity of 15\(ms^{-1}\). Calculate the maximum height reached. \([g = 10ms^{-2}]\)

A.

15.25m

B.

13.25m

C.

11.25m

D.

10.25m

Correct answer is C

Maximum height (H) = \(\frac{u^{2}}{2g}\)

= \(\frac{15^{2}}{2 \times 10} = \frac{225}{20}\)

= \(11.25m\)