\(6\)
\(\frac{11}{6}\)
\(\frac{11}{4}\)
\(\frac{5}{3}\)
Correct answer is B
\(h : x \to 2 - \frac{1}{2x - 3}\)
\(h(x) = \frac{2(2x - 3) - 1}{2x - 3} = \frac{4x - 7}{2x - 3}\)
Let x = h(y)
\(x = \frac{4y - 7}{2y - 3}\)
\(x(2y - 3) = 4y - 7 \implies 2xy - 4y = 3x - 7\)
\(y = \frac{3x - 7}{2x - 4}\)
\(h^{-1}(x) = \frac{3x - 7}{2x - 4}\)
\(\therefore h^{-1}(\frac{1}{2}) = \frac{3(\frac{1}{2}) - 7}{2(\frac{1}{2}) - 4}\)
= \(\frac{\frac{-11}{2}}{-3} = \frac{11}{6}\)
If \((x - 5)\) is a factor of \(x^3 - 4x^2 - 11x + 30\), find the remaining factors....
If \(P = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}\), find \((P^{2} + P)\)....
Given that \(r = 3i + 4j\) and \(t = -5i + 12j\), find the acute angle between them....
Solve: \(\sin \theta = \tan \theta\)...
Three forces \(F_{1} = (8 N, 300°), F_{2} = (6 N, 090°)\) and \(F_{3} = (4 N, 180°)\) ac...