\(8\pi cm^{2}s^{-1}\)
\(16\pi cm^{2}s^{-1}\)
\(24\pi cm^{2}s^{-1}\)
\(48\pi cm^{2}s^{-1}\)
Correct answer is D
Surface area of sphere, \( A = 4\pi r^{2}\)
\(\frac{\mathrm d A}{\mathrm d r} = 8\pi r\)
The rate of change of radius with time \(\frac{\mathrm d r}{\mathrm d t} = 3cm s^{-1}\)
\(\frac{\mathrm d A}{\mathrm d t} = (\frac{\mathrm d A}{\mathrm d r})(\frac{\mathrm d r}{\mathrm d t})\)
= \(8\pi \times 2cm \times 3cm s^{-1} = 48\pi cm^{2}s^{-1}\)
If \(2, (k+1), 8,...\) form an exponential sequence (GP), find the values of k...
Given that F\(^1\)(x) = x\(^3\)√x, find f(x)...
A body is acted upon by two forces \(F_{1} = (5 N, 060°)\) and \(F_{2} = (10 N, 180°)\). Fin...
Simplify \(\frac{^{n}P_{4}}{^{n}C_{4}}\)...
If g : r \(\to\) 5 - 2r, r is a real number, find the image of -3...