Processing math: 18%
Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

6.

The probabilities that Atta and Tunde will hit a target in a shooting contest are 16 and 19 respectively. Find the probability that only one of them will hit the target.

A.

154

B.

4154

C.

2027

D.

1354

Correct answer is D

P(A)=16,P(T)=19

Probability that only one of them will hit the target = P(A)×P(ˉT)+P(ˉA)×P(T)

Where P(ˉT) is the probability that Tunde will not hit the target and P(ˉA) is the probability that Atta will not hit the target

P(ˉT)=119=89

P(ˉA)=116=56

Pr(only one) =(16×89)+(56×19)=427+554

pr (only one) = \frac{13}{54}

7.

A function f is defined by f :x→\frac{x + 2}{x - 3},x ≠ 3.Find the inverse of f .

A.

\frac{x + 3}{x - 2},x ≠ 2

B.

\frac{x - 3}{x + 2},x ≠ -2

C.

\frac{3x - 2}{x+1},x ≠ -1

D.

\frac{3x + 2}{x - 1},x ≠ 1

Correct answer is D

f :x→\frac{x + 2}{x - 3},x ≠ 3, f = ?

Let f :x=y

y=\frac{x + 2}{x - 3}

=x+2=y(x-3)

=x-xy=-3y-2

=x(1-y)=-3y-2

=x=\frac{-3y - 2}{1 - y}=\frac{-(3y + 2)}{- (y - 1)}

=x=\frac{3y + 2}{y - 1}

∴f ^{-1} : x=\frac{3x + 2}{x - 1},x ≠ 1

8.

If X and Y are two independent events such that P (X) = \frac{1}{8} and P (X ⋃ Y) = \frac{5}{8}, find P (Y).

A.

\frac{1}{6}

B.

\frac{4}{7}

C.

\frac{4}{21}

D.

\frac{3}{7}

Correct answer is B

P(X⋃Y)=\frac{5}{8}

P(X⋂Y)=P(X)\times P(Y)

Since X and Y are independent events, the probability of their union (X ⋃ Y) can be calculated as:

P(X⋃Y)=P(X)+P(Y)-P(X⋂Y)

=\frac{5}{8}=\frac{1}{8}+P(Y)-\frac{1}{8}\times P(Y)

=\frac{5}{8}-\frac{1}{8}=P(Y)-\frac{1}{8}\times P(Y)

=\frac{1}{2}=P(Y)(1-\frac{1}{8})

=\frac{1}{2}=P(Y)(\frac{7}{8})

=P(Y)=\frac{1}{2}÷\frac{7}{8}

∴P(Y)=\frac{1}{2}x\frac{8}{7}=\frac{4}{7}

9.

Given that y^2 + xy = 5,find \frac{dy}{dx}

A.

\frac{y}{2y + x}

B.

\frac{-y}{2y + x}

C.

\frac{-y}{2y - x}

D.

\frac{y}{2y + x}

Correct answer is B

y^2 + xy = 5

By implicit differentiation

=2y\frac{dy}{dx}+y+x\frac{dy}{dx}=0

=2y\frac{dy}{dx}+x\frac{dy}{dx}=-y

Factor out \frac{dy}{dx}

=\frac{dy}{dx}(2y+x)=-y

∴\frac{dy}{dx}=\frac{-y}{2y + x}

10.

A linear transformation on the oxy plane is defined by P : (x, y) → (2x + y, -2y). Find P^2

A.

\begin{bmatrix} 4&0\\1&4\end{bmatrix}

B.

\begin{bmatrix} 4&4\\0&0\end{bmatrix}

C.

\begin{bmatrix} 4&0\\0&4\end{bmatrix}

D.

\begin{bmatrix} 4&1\\0&4\end{bmatrix}

Correct answer is C

P : (x, y) → (2x + y, -2y)

p\begin{bmatrix} x\\y\end{bmatrix}=\begin{bmatrix} 2x & y\\0 &-2y\end{bmatrix}

\therefore p = \begin{bmatrix} 2 & 1\\0 &-2\end{bmatrix}

\therefore p^2 = \begin{bmatrix} 2&1\\0&-2\end{bmatrix} \begin{bmatrix} 2&1\\0&-2\end{bmatrix} = \begin{bmatrix} 4&0\\0&4\end{bmatrix}