Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

11.

The velocity of a body of mass 4.56 kg increases from \((10 ms^{-1}, 060^o) to (50 ms ^{-1}, 060^o)\) in 16 seconds . Calculate the magnitude of force acting on it.

A.

17.1 N

B.

11.4 N

C.

36.5 N

D.

5.7 N

Correct answer is B

\(m=4.56kg;t=16s;v_1=(10ms^{-1},060^o);v_2=(50ms^{-1},060^o)\)

Notice that there is no change in the direction of the velocity

So,we don't need to write it in a vector form

\(a=\frac{∆v}{t}=\frac{50 - 10}{16}\)

\(a=\frac{40}{16}=2.5ms^{-2}\)

F = ma = 4.56 x 2.5

∴ F = 11.4 N

12.

Given that \(\frac{3x + 4}{(x - 2)(x + 3)}≡\frac{P}{x + 3}+\frac{Q}{x - 2}\),find the value of Q

A.

2

B.

-2

C.

1

D.

-1

Correct answer is A

\(\frac{3x + 4}{(x - 2)(x + 3)}≡\frac{P}{x + 3}+\frac{Q}{x - 2}\)

\(\frac{3x + 4}{(x - 2)(x + 3)}=\frac{P(x-2)+Q(x+3)}{(x-2)(x+3)}\)

=\(3x+4=P(x-2)+Q(x+3)\)

=\(3x+4=Px-2P+Qx+3Q\)

=\(3x+4=Px+Qx-2P+3Q\)

=\(3x+4=(P+Q)x-2P+3Q\)

Equating x and the constants

P+Q=3------(i)

2P+3Q=4-------(ii)

From equation (i)

P=3-Q------(iii)

Substitute (3-Q) for P inequation (ii)

=-2(3-Q)+3Q=4

=-6+2Q+3Q=4

=-6+5Q=4

=5Q=4+6

=5Q=10

∴Q=\(\frac{10}{5}=2\)

13.

If \(3x^2 + p x + 12 = 0\) has equal roots, find the values of p .

A.

±12

B.

±3

C.

±4

D.

±6

Correct answer is A

The general form of a quadratic equation is:

\(x^2\)-(sum of roots) = 0

For equal roots it's:\(x^2 - 2(α)+(α)^2=0\)

\(3x^2+px+12=0\)

Divide through by 3

= \(x^2+\frac{p}{3}x+4=0\)

=\(x^2-(-\frac{p}{3})x+4=0\)

\(So,α^2=4\)

= α = √4 = ±2

Also,-\(\frac{p}{3}= 2α\)

When α = 2

-\(\frac{p}{3} = 2(2)=4\)

=p=-12

When α =-2

-\(\frac{p}{3}=2(-2)=-4\)

= p = 12

∴ values of p = ±12

14.

If α and β are the roots of \(7x2 +12x - 4 = 0\),find the value of \(\frac{αβ}{(α + β)^2}\)

A.

\( \frac{7}{36}\)

B.

-\( \frac{36}{7}\)

C.

\(\frac{36}{7}\)

D.

-\( \frac{7}{36}\)

Correct answer is D

The general form of a quadratic equation is:

\(x^2\) -(sum of roots)\(x\) +(product of roots) = 0

\(7x^2+12x-4=0\)

Divide through by 7

=\(x^2+\frac{12}{7}x-\frac{4}{7}=0\)

=\(x^2-(-\frac{12}{7})x+(-\frac{4}{7})=0\)

\(\therefore\) sum of roots = \(-\frac{12}{7}\), and products of roots =\(-\frac{4}{7}\)

α + β = \(-\frac{12}{7}, αβ = -\frac{4}{7}\)

\(\frac{αβ}{(α + β)^2} = \frac{\frac{-4}{7}}{(\frac{-12}{7})^2}\)

=\(\frac{\frac{-4}{7}}{\frac{144}{49}}=-\frac{4}{7}\times\frac{49}{144}\)

\(\therefore - \frac{7}{36}\)

15.

>Evaluate: \(\int(2x + 1)^3 dx\)

A.

\(8(2x + 1)^2 + k\)

B.

\(6(2x + 1)^2 + k\)

C.

\(\frac{1}{8} (2x + 1)^4 + k\)

D.

\(\frac{1}{6} (2x + 1)^4 + k\)

Correct answer is C

Using substitution method, Let \(u = 2x + 1\)

\(\frac{du}{dx}=2==>du=2dx==>dx=\frac{du}{2}\)

=\(\int\frac{u^3}{2} du = \frac{1}{2}\int u^3 du\)

=\(\frac{1}{2}(\frac{u^4}{4})=\frac{u^4}{8}\)

\(\therefore\frac{1}{8} (2x + 1)^4 + k\)