16
47
421
37
Correct answer is B
P(X⋃Y)=58
P(X⋂Y)=P(X)×P(Y)
Since X and Y are independent events, the probability of their union (X ⋃ Y) can be calculated as:
P(X⋃Y)=P(X)+P(Y)−P(X⋂Y)
=58=18+P(Y)−18×P(Y)
=58−18=P(Y)−18×P(Y)
=12=P(Y)(1−18)
=12=P(Y)(78)
=P(Y)=12÷78
∴P(Y)=\frac{1}{2}x\frac{8}{7}=\frac{4}{7}
Simplify: \frac{log √27 - log √8}{log 3 - log 2}...
The roots of the quadratic equation 2x^{2} - 5x + m = 0 are \alpha and \beta, where m is...
If \frac{15 - 2x}{(x+4)(x-3)} = \frac{R}{(x+4)} \frac{9}{7(x-3)}, find the value of...
Using the binomial expansion (1+x)^{6} = 1 + 6x + 15x^{2} + 20x^{3} + 15x^{4} + 6x^{5} + x^{6}, ...
Find the coefficient of the 6^{th}term in the binomial expansion of \((1 - \frac{2x}{3})10\...
Which of these inequalities is represented by the shaded portion of the graph? ...
If B = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}, find \(B^{-...
Simplify \frac{\sqrt{128}}{\sqrt{32} - 2\sqrt{2}}...
If g(x) = \frac{x + 1}{x - 2}, x \neq -2, find g^{-1}(2)....