Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

36.

Given that \(sin x = \frac{4}{5}\) and \(cos y = \frac{12}{13}\), where x is an obtuse angle and y is an acute angle, find the value of sin (x - y).

A.

\(\frac{63}{65}\)

B.

\(\frac{48}{65}\)

C.

\(\frac{56}{65}\)

D.

\(\frac{16}{65}\)

Correct answer is A

\(sin x = \frac{4}{5}\) and \(cos y = \frac{12}{13}\)

x is obtuse i.e sin x = + ve while cos x = + ve

\(cos x=\frac{3}{5}==>cos x=-\frac {3}{5}(obtuse)\)

\(sin y= \frac{5}{13}\)

\(sin (x-y) = sin x\) \(cos y - cos x\) \(sin y\)

\(sin(x-y) = \frac{4}{5}\times\frac{12}{13}-(-\frac{3}{5})\times\frac{5}{13}\)

\(sin(x-y) = \frac{48}{65}-(-\frac{3}{13})\)

\(\therefore sin (x-y) = \frac{48}{65} + \frac{3}{13} = \frac{63}{65}\)

37.

Evaluate \(\int^1_0 x(x^2-2)^2 dx\)

A.

\(\frac{6}{7}\)

B.

\(1\frac{1}{6}\)

C.

\(\frac{1}{7}\)

D.

\(3\frac{1}{6}\)

Correct answer is B

\(\int^1_0 x(x^2-2)^2 dx\)

\((x^2-2)^2=x^4-2x^2-2x^2+4\)

=\(x^4-4x^2+4\)

\(x(x^2-2)^2=x(x^4-4x^2+4)\)

=\(x^5-4x^3+4x\)

\(\int^1_0 x(x^2-2)^2 dx = \int^1_0 x^5 - 4x^3 + 4x dx\)

=\((\frac{x^6}{6} - x^4+2x^2)^1_0\)

= \((\frac{(1)^6}{6} - (1)^4 +2(1)^2)-(\frac{(0)^6}{6} - (0)^4+2(0)^2)\)

=\(\frac{7}{6} - 0 =\frac{7}{6}\)

\(\therefore 1\frac{1}{6}\)

38.

The distance S metres moved by a body in t seconds is given by \(S = 5t^3 - \frac{19}{2} t^2 + 6t - 4\). Calculate the acceleration of the body after 2 seconds

A.

19 \(ms ^{-2}\)

B.

21 \(ms ^{-2}\)

C.

41 \(ms ^{-2}\)

D.

31 \(ms ^{-2}\)

Correct answer is C

\(S = 5t^3 - \frac{19}{2} t^2 + 6t - 4\)

\(v(t)=\frac{dS}{dt}=15t^2-19t+6\)

\(a(t)=\frac{dv}{dt}=30t-19\)

∴a(2)=30(2)-19=60-19=41 \(ms ^{-2}\)

39.

Find the equation of the normal to the curve y = \(3x^2 + 2\) at point (1, 5)

A.

6y - x - 29 = 0

B.

6y + x - 31 = 0

C.

y - 6x - 1 = 0

D.

y - 6x + 1 = 0

Correct answer is B

y = \(3x^2 + 2\)

\(y^1 = \frac{dy}{dx} = 6x\)

Evaluating this derivative at x = 1 (since the point of interest is (1, 5)) gives us the slope of the tangent line at that point:
\(^mtangent = y^1(1) = 6 (1) = 6\)
Slope of the Normal Line \( ^mnorma l= - \frac{1}{^mtangent}\)

\(^mnormal = - \frac{1}{6}\)

\(y−y_1​= ^mnormal⋅(x−x_1)\)

=y-5=-\(\frac{1}{6}(x-1)\)

=y-5=-\(\frac{1}{6}x+\frac{1}{6}\)

=y=-\(\frac{1}{6}x+\frac{1}{6}+5\)

Multiply through by 6

=6y=-x+1+30

∴6y+ x - 31=0

40.

Calculate, correct to one decimal place, the angle between 5 i + 12 j and -2 i + 3 j

A.

56.3º

B.

76.3º

C.

66.4º

D.

54.8º

Correct answer is A

Using the dot product:

a.b = |a||b|cos θ

a.b = 5(-2) + 12(3) = -10 + 36 = 26

|a| = √(52 + 122) = √(25 + 144)

|a| = √169 = 13

|b| = \(√((-2)^2 + 3^2)\) = √(4 + 9)

|b| = √13

= 26 = 13√13 x cos θ

= \(\frac{26}{13\sqrt13}\) = cos θ

=\(\frac{2}{\sqrt13}\) = cos θ

= θ = \(cos^{-1} (\frac{2}{\sqrt13})\)

∴ θ = 56.3º