Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.
\(\frac{63}{65}\)
\(\frac{48}{65}\)
\(\frac{56}{65}\)
\(\frac{16}{65}\)
Correct answer is A
\(sin x = \frac{4}{5}\) and \(cos y = \frac{12}{13}\)
x is obtuse i.e sin x = + ve while cos x = + ve
\(cos x=\frac{3}{5}==>cos x=-\frac {3}{5}(obtuse)\)
\(sin y= \frac{5}{13}\)
\(sin (x-y) = sin x\) \(cos y - cos x\) \(sin y\)
\(sin(x-y) = \frac{4}{5}\times\frac{12}{13}-(-\frac{3}{5})\times\frac{5}{13}\)
\(sin(x-y) = \frac{48}{65}-(-\frac{3}{13})\)
\(\therefore sin (x-y) = \frac{48}{65} + \frac{3}{13} = \frac{63}{65}\)
Evaluate \(\int^1_0 x(x^2-2)^2 dx\)
\(\frac{6}{7}\)
\(1\frac{1}{6}\)
\(\frac{1}{7}\)
\(3\frac{1}{6}\)
Correct answer is B
\(\int^1_0 x(x^2-2)^2 dx\)
\((x^2-2)^2=x^4-2x^2-2x^2+4\)
=\(x^4-4x^2+4\)
\(x(x^2-2)^2=x(x^4-4x^2+4)\)
=\(x^5-4x^3+4x\)
\(\int^1_0 x(x^2-2)^2 dx = \int^1_0 x^5 - 4x^3 + 4x dx\)
=\((\frac{x^6}{6} - x^4+2x^2)^1_0\)
= \((\frac{(1)^6}{6} - (1)^4 +2(1)^2)-(\frac{(0)^6}{6} - (0)^4+2(0)^2)\)
=\(\frac{7}{6} - 0 =\frac{7}{6}\)
\(\therefore 1\frac{1}{6}\)
19 \(ms ^{-2}\)
21 \(ms ^{-2}\)
41 \(ms ^{-2}\)
31 \(ms ^{-2}\)
Correct answer is C
\(S = 5t^3 - \frac{19}{2} t^2 + 6t - 4\)
\(v(t)=\frac{dS}{dt}=15t^2-19t+6\)
\(a(t)=\frac{dv}{dt}=30t-19\)
∴a(2)=30(2)-19=60-19=41 \(ms ^{-2}\)
Find the equation of the normal to the curve y = \(3x^2 + 2\) at point (1, 5)
6y - x - 29 = 0
6y + x - 31 = 0
y - 6x - 1 = 0
y - 6x + 1 = 0
Correct answer is B
y = \(3x^2 + 2\)
\(y^1 = \frac{dy}{dx} = 6x\)
Evaluating this derivative at x = 1 (since the point of interest is (1, 5)) gives us the slope of the tangent line at that point:
\(^mtangent = y^1(1) = 6 (1) = 6\)
Slope of the Normal Line \( ^mnorma l= - \frac{1}{^mtangent}\)
\(^mnormal = - \frac{1}{6}\)
\(y−y_1= ^mnormal⋅(x−x_1)\)
=y-5=-\(\frac{1}{6}(x-1)\)
=y-5=-\(\frac{1}{6}x+\frac{1}{6}\)
=y=-\(\frac{1}{6}x+\frac{1}{6}+5\)
Multiply through by 6
=6y=-x+1+30
∴6y+ x - 31=0
Calculate, correct to one decimal place, the angle between 5 i + 12 j and -2 i + 3 j
56.3º
76.3º
66.4º
54.8º
Correct answer is A
Using the dot product:
a.b = |a||b|cos θ
a.b = 5(-2) + 12(3) = -10 + 36 = 26
|a| = √(52 + 122) = √(25 + 144)
|a| = √169 = 13
|b| = \(√((-2)^2 + 3^2)\) = √(4 + 9)
|b| = √13
= 26 = 13√13 x cos θ
= \(\frac{26}{13\sqrt13}\) = cos θ
=\(\frac{2}{\sqrt13}\) = cos θ
= θ = \(cos^{-1} (\frac{2}{\sqrt13})\)
∴ θ = 56.3º