\(\begin{bmatrix} 4&0\\1&4\end{bmatrix}\)
\(\begin{bmatrix} 4&4\\0&0\end{bmatrix}\)
\(\begin{bmatrix} 4&0\\0&4\end{bmatrix}\)
\(\begin{bmatrix} 4&1\\0&4\end{bmatrix}\)
Correct answer is C
\(P : (x, y) → (2x + y, -2y)\)
\(p\begin{bmatrix} x\\y\end{bmatrix}=\begin{bmatrix} 2x & y\\0 &-2y\end{bmatrix}\)
\(\therefore p = \begin{bmatrix} 2 & 1\\0 &-2\end{bmatrix}\)
\(\therefore p^2 = \begin{bmatrix} 2&1\\0&-2\end{bmatrix}\) \(\begin{bmatrix} 2&1\\0&-2\end{bmatrix}\) = \(\begin{bmatrix} 4&0\\0&4\end{bmatrix}\)
Simplify \(\frac{1 + \sqrt{8}}{3 - \sqrt{2}}\)...
Given that M is the midpoint of T (2, 4) and Q (-8, 6), find the length of MQ . ...
Two forces, each of magnitude 16 N, are inclined to each other at an angle of 60°. Calculate the...
Solve: 8\(^{x - 2}\) = 4\(^{3x}\)...
Find the locus of points which is equidistant from P(4, 5) and Q(-6, -1). ...