Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.
An exponential sequence (G.P.) is given by 8√2, 16√2, 32√2, ... . Find the nth term of the sequence
8√2n
2(n+2)√2
√2(n+3)
8n√2
Correct answer is B
8√2, 16√2, 32√2, ..
a=8√2;r=T2T1=16√28√2=2
Tn=arn−1
Tn=8√2×2n−1
Tn=23×2n−1×√2
Tn=23+n−1×√2
∴
Solve 6 sin 2θ tan θ = 4, where 0º < θ < 90º
18.43º
30.00º
35.26º
19.47º
Correct answer is C
6 sin 2θ tan θ = 4, where 0º < θ < 90º
sin 2θ = 2sin θ cos θ and tanθ = \frac{sinθ}{cosθ}
= 6 x 2sin θ cos θ x \frac{sin θ}{cos θ} = 4
= sin^2 θ = 4
= sin^2 θ = \frac{4}{12}=\frac{1}{3}
=sin θ = \frac{\sqrt1}{3}=\frac{1}{\sqrt3}
= θ = sin^{-1}(\frac{1}{\sqrt3})
∴ θ = 35.26º
Given that r = (10 N , 200º) and n = (16 N , 020º), find (3r - 2n).
(62 N , 240º)
(62 N , 200º)
(62 N , 280º)
(62 N , 020º)
Correct answer is D
r = (10 N, 200º) and n = (16 N, 020º)
In rectangular form:
r = 10cos 200ºi + 10sin 200ºj = -9.397i - 3.420j
n = 16cos 20ºi + 16sin 20ºj = 15.035i + 5.472j
3r = -28.191i - 10.260j
2n = 30.070i + 10.945j
3r - 2n = (-28.191i - 10.260j) - (30.070i + 10.945j)
3r - 2n = -58.261i - 21.205j
|3r - 2n| = √((-58.261)^2 + (-21.205)^2) = 62 N
tan θ =\frac{-21.205}{-58.261} = 0.3640
θ = tan^{-1} (0.3640) = 20^o
∴ (62 N , 020º)
Simplify: \frac{log √27 - log √8}{log 3 - log 2}
\frac{3}{2}
-\frac{1}{4}
-\frac{3}{2}
\frac{1}{4}
Correct answer is A
\frac{log √27 - log √8}{log 3 - log 2}
= \frac{log √3^3 - log √2^3}{log 3 - log 2}
= \frac{log3^{3/2} - log2^{3/2}}{log3}
=\frac{^3/_2(log 3 - log 2)}{log 3 - log 2}
\therefore\frac{3}{2}
The table shows the mark obtained by students in a test.
Marks | 1 | 2 | 3 | 4 | 5 |
Frequency | 2 | k | 1 | 1 | 2 |
4
1
2
3
Correct answer is B
x̄ =\frac{∑fx}{∑f}= 3
=\frac{(1 \times 2)+(2 \times k)+(3 \times 1)+(4 \times 1)+(5 \times 2)}{2 + k + 1 + 1 + 2}= 3
=\frac{2 + 2k + 3 + 4 + 10}{6 + k} = 3
=\frac{19 + 2k}{6 + k} = 3
=\frac{19 + 2k}{6 + k} = \frac{3}{1}
=19+2k=3(6+k)
=19+2k=18+3k
=2k-3k=18-19
=-k=-1
∴k=1