\(\frac{1}{54}\)
\(\frac{41}{54}\)
\(\frac{20}{27}\)
\(\frac{13}{54}\)
Correct answer is D
\(P(A)=\frac{1}{6},P(T)=\frac{1}{9}\)
Probability that only one of them will hit the target = \(P(A)\times P( \bar T ) + P( \bar A )\times P(T)\)
Where \(P( \bar T )\) is the probability that Tunde will not hit the target and \(P( \bar A )\) is the probability that Atta will not hit the target
\(P( \bar T )=1-\frac{1}{9}=\frac{8}{9}\)
\(P( \bar A )=1-\frac{1}{6}=\frac{5}{6}\)
Pr(only one) =\((\frac{1}{6}\times\frac{8}{9}) + (\frac{5}{6} \times \frac{1}{9}) =\frac{4}{27} + \frac{5}{54}\)
\(\therefore\) pr (only one) = \(\frac{13}{54}\)
Given that \(p = \begin{bmatrix} x&4\\3&7\end{bmatrix} Q =\begin{bmatrix} x&3\\1&2x\...
A force of 30 N acts at an angle of 60° on a body of mass 6 kg initially at rest on a smooth hor...
Simplify \(\frac{^{n}P_{5}}{^{n}C_{5}}\)...
Given that \(f(x) = 2x^{2} - 3\) and \(g(x) = x + 1\) where \(x \in R\). Find g o f(x)....
If \(g(x) = \frac{x + 1}{x - 2}, x \neq -2\), find \(g^{-1}(2)\)....
Differentiate \(\frac{5x^ 3+x^2}{x}\), x ≠ 0 with respect to x....
Find correct to the nearest degree,5 the angle between p = 12i - 5j and q = 4i +3j...