Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

501.

The function \(f : F \to R\) 

= \(f(x) = \begin{cases} 3x + 2 : x > 4 \\ 3x - 2 : x = 4 \\ 5x - 3 : x < 4 \end{cases}\). Find f(4) - f(-3).

A.

28

B.

26

C.

-26

D.

-28

Correct answer is A

\(f(4) = 3(4) - 2 = 12 - 2 = 10\)

\(f(-3) = 5(-3) - 3 = -15 - 3 = -18\)

\(f(4) - f(-3) = 10 - (-18) = 28\)

502.

The angle subtended by an arc of a circle at the centre is \(\frac{\pi}{3} radians\). If the radius of the circle is 12cm, calculate the perimeter of the major arc.

A.

\(4(6 + 5\pi)\)

B.

\(4(6 + 2\pi)\)

C.

\(4(3 + 3\pi)\)

D.

\(4(3 + 5\pi)\)

Correct answer is A

The angle subtended by the minor arc = \(\frac{\pi}{3} radians\)

The angle subtended by the major arc = \(2\pi - \frac{\pi}{3} = \frac{5\pi}{3}\)

Perimeter of the major arc = \(r\theta + 2r\)

= \(12 \times \frac{5\pi}{3} + 2(12) = 20\pi + 24\)

= \(4(5\pi + 6)\)

503.

Find the coordinates of the point which divides the line joining P(-2, 3) and Q(4, 9) internally in the ratio 2 : 3.

A.

\((5\frac{2}{3}, \frac{2}{5})\)

B.

\((\frac{2}{5}, 5\frac{2}{5})\)

C.

\((\frac{2}{5}, 2\frac{2}{5})\)

D.

\((\frac{-2}{5}, 5\frac{2}{5})\)

Correct answer is B

\((x = \frac{nx_{1} + mx_{2}}{n + m}, y = \frac{ny_{1} + my_{2}}{n + m})\)

Given P(-2, 3) and Q(4, 9),

\((\frac{2(4) + 3(-2)}{2 + 3}, \frac{2(9) + 3(3)}{2 + 3})\)

= \((\frac{2}{5}, \frac{27}{5})\)

= \((\frac{2}{5}, 5\frac{2}{5})\)

504.

Evaluate \(\int_{0}^{2} (8x - 4x^{2}) \mathrm {d} x\).

A.

\(-16\)

B.

\(\frac{-16}{3}\)

C.

\(\frac{16}{3}\)

D.

\(16\)

Correct answer is C

\(\int_{0}^{2} (8x - 4x^{2}) \mathrm {d} x  = (\frac{8x^{1 + 1}}{2} - \frac{4x^{2+1}}{3})|_{0}^{2}\)

= \((4x^{2} - \frac{4x^{3}}{3}) |_{0}^{2}\)

= \((4(2^2) - \frac{4(2^3)}{3})\)

= \(16 - \frac{32}{3} = \frac{16}{3}\)

505.

An object is thrown vertically upwards from the top of a cliff with a velocity of \(25ms^{-1}\). Find the time, in seconds, when it is 20 metres above the cliff. \([g = 10ms^{-2}]\).

A.

0 and 1

B.

0 and 4

C.

0 and 5

D.

1 and 4

Correct answer is D

\(s = ut + \frac{at^{2}}{2}\)

This movement is against gravity, so it is negative.

\(s = ut - \frac{gt^{2}}{2}\)

\(s = 20m, u = 25ms^{-1}\)

\(20 = 25t - \frac{10t^{2}}{2} \implies 20 = 25t - 5t^{2}\)

\(5t^{2} - 25t + 20 = 0 \)

\(5t^{2} - 5t - 20t + 20 = 0 \implies 5t(t - 1) - 20(t - 1) = 0\)

\(5t - 20 = \text{0 or t - 1 = 0}\)

\(t = \text{1 or 4}\)