\frac{7}{2}
0
\frac{-7}{2}
-7
Correct answer is A
\lim\limits_{x \to 3} (\frac{x^{3} + x^{2} - 12x}{x^{2} - 9}) = \lim\limits_{x \to 3} (\frac{x^{3} - 3x^{2} + 4x^{2} - 12x}{(x - 3)(x + 3)}
\lim\limits_{x \to 3} (\frac{(x^{2} + 4x)(x - 3)}{(x - 3)(x + 3)} = \lim\limits_{x \to 3} (\frac{x^{2} + 4x}{x + 3})
=\frac{3^{2} + 4(3)}{3 + 3} = \frac{21}{6} = \frac{7}{2}
Simplify: \frac{log √27 - log √8}{log 3 - log 2}...
Find the equation of the normal to the curve y = 3x^2 + 2 at point (1, 5)...
Find the equation of a circle with centre (-3, -8) and radius 4\sqrt{6}...
If V = \begin{pmatrix} -2 \\ 4 \end{pmatrix} and \(U = \begin{pmatrix} ...
Express r = (12, 210°) in the form a i + b j....
P, Q, R, S are points in a plane such that PQ = 8i - 5j, QR = 5i + 7j, RS = 7i + 3j and PS = x...
If y = x^{3} - x^{2} - x + 6, find the values of x at the turning point....
If P(x - 3) + Q(x + 1) = 2x + 3, find the value of (P + Q). ...
Given that \sin x = \frac{-\sqrt{3}}{2} and \cos x > 0, find x...