\(\frac{7}{2}\)
\(0\)
\(\frac{-7}{2}\)
\(-7\)
Correct answer is A
\(\lim\limits_{x \to 3} (\frac{x^{3} + x^{2} - 12x}{x^{2} - 9}) = \lim\limits_{x \to 3} (\frac{x^{3} - 3x^{2} + 4x^{2} - 12x}{(x - 3)(x + 3)}\)
\(\lim\limits_{x \to 3} (\frac{(x^{2} + 4x)(x - 3)}{(x - 3)(x + 3)} = \lim\limits_{x \to 3} (\frac{x^{2} + 4x}{x + 3})\)
=\(\frac{3^{2} + 4(3)}{3 + 3} = \frac{21}{6} = \frac{7}{2}\)
Given that \(f : x \to x^{2}\) and \(g : x \to x + 3\), where \(x \in R\), find \(f o g(2)\)....
Simplify \(\frac{\log_{5} 8}{\log_{5} \sqrt{8}}\)....
The gradient ofy= 3x\(^2\) + 11x + 7 at P(x.y) is -1. Find the coordinates of P. ...
Given that \(f '(x) = 3x^{2} - 6x + 1\) and f(3) = 5, find f(x)....
A particle is acted upon by two forces 6N and 3N inclined at an angle of 120° to each other. Fin...
Find the fifth term in the binomial expansion of \((q + x)^7\)....