Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.
If nC3nP2=1, find the value of n.
8
7
6
5
Correct answer is A
nC3=n!(n−3)!3!
nP2=n!(n−2)!
nC3nP2=n!(n−3)!3!÷n!(n−2)!
n!(n−3)!3!×(n−2)!n!=(n−2)!(n−3)!3!
Note that (n−2)!=(n−2)×(n−2−1)!=(n−2)(n−3)!
(n−2)(n−3)!(n−3)!3!=1
n−23!=1⟹n−2=6
n=2+6=8
If V=(−24) and U=(−15), find |U+V|.
3√10
√82
15
2√5
Correct answer is A
V=(−24) and U=(−15)
U+V=(−1−25+4)=(−39)
|U+V|=√(−3)2+92=√9+81=√90
= sqrt9×10=3√10
Calculate the mean deviation of 1, 2, 3, 4, 5, 5, 6, 7, 8, 9.
2
3
4
5
Correct answer is A
x | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | 9 | Total |
x−ˉx | -4 | -3 | -2 | -1 | 0 | 0 | 1 | 2 | 3 | 4 | |
|x−ˉx| | 4 | 3 | 2 | 1 | 0 | 0 | 1 | 2 | 3 | 4 | 20 |
Mean (ˉx) = 1+2+3+4+5+5+6+7+8+910=5010=5
MD=∑|x−ˉx|n=2010=2
If g(x)=x+1x−2,x≠−2, find g−1(2).
3
2
34
-3
Correct answer is D
g(x)=x+1x+2,x≠2
Let y = x, then g(y)=y+1y+2
Let x = g(y), so that x=y+1y+2
x(y+2)=y+1
xy+2x=y+1⟹xy−y=1−2x
y(x−1)=1−2x⟹y=1−2xx−1
y=g−1(x)=1−2xx−1
g−1(2)=1−2(2)2−1=−3