Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

481.

A body is kept at rest by three forces \(F_{1} = (10N, 030°), F_{2} = (10N, 150°)\) and \(F_{3}\). Find \(F_{3}\).

A.

(12N, 090°)

B.

(10N, 270°)

C.

(10N, 180°)

D.

(10N, 120°)

Correct answer is B

No explanation has been provided for this answer.

482.

If \(\frac{^{n}C_{3}}{^{n}P_{2}} = 1\), find the value of n.

A.

8

B.

7

C.

6

D.

5

Correct answer is A

\(^{n}C_{3} = \frac{n!}{(n - 3)! 3!}\)

\(^{n}P_{2} = \frac{n!}{(n - 2)!}\)

\(\frac{^{n}C_{3}}{^{n}P_{2}} = \frac{n!}{(n - 3)! 3!} ÷ \frac{n!}{(n - 2)!}\)

\(\frac{n!}{(n - 3)! 3!} \times \frac{(n - 2)!}{n!} = \frac{(n - 2)!}{(n - 3)! 3!}\)

Note that \((n - 2)! = (n - 2) \times (n - 2 - 1)! = (n - 2)(n - 3)!\)

\(\frac{(n - 2)(n - 3)!}{(n - 3)! 3!} = 1\)

\(\frac{n - 2}{3!} = 1 \implies n - 2 = 6\)

\(n = 2 + 6 = 8\)

483.

Find the equation of the straight line that passes through (2, -3) and perpendicular to the line 3x - 2y + 4 = 0.

A.

2y - 3x = 0

B.

3y - 2x + 5 = 0

C.

3y + 2x + 5 = 0

D.

2y - 3x - 5 = 0

Correct answer is C

Given line: \(3x - 2y + 4 = 0 \implies 2y = 3x + 4\)

\(y = \frac{3}{2}x + 2\)

\(Gradient (\frac{\mathrm d y}{\mathrm d x}) = \frac{3}{2}\)

Gradient of perpendicular line = \(\frac{-1}{\frac{3}{2}} = \frac{-2}{3}\)

\(\implies \frac{y - (-3)}{x - 2} = \frac{-2}{3}\)

\(\frac{y + 3}{x - 2} = \frac{-2}{3} \)

\(3(y + 3) = -2(x - 2) \implies 3y + 2x + 9 - 4 = 0\)

= \(3y + 2x + 5 = 0\)

484.

If \(V = \begin{pmatrix} -2 \\ 4 \end{pmatrix}\) and \(U = \begin{pmatrix} -1 \\ 5 \end{pmatrix}\), find \(|U + V|\).

A.

\(3\sqrt{10}\)

B.

\(\sqrt{82}\)

C.

15

D.

\(2\sqrt{5}\)

Correct answer is A

 \(V = \begin{pmatrix} -2 \\ 4 \end{pmatrix}\) and \(U = \begin{pmatrix} -1 \\ 5 \end{pmatrix}\)

\(U + V = \begin{pmatrix} -1 - 2 \\ 5 + 4 \end{pmatrix} = \begin{pmatrix} -3 \\ 9 \end{pmatrix}\)

\(|U + V| = \sqrt{(-3)^{2} + 9^{2}} = \sqrt{9 + 81} = \sqrt{90}\)

= \(sqrt{9 \times 10} = 3\sqrt{10}\)

485.

Calculate the mean deviation of 1, 2, 3, 4, 5, 5, 6, 7, 8, 9.

A.

2

B.

3

C.

4

D.

5

Correct answer is A

x 1 2 3 4 5 5 6 7 8 9 Total
\(x - \bar{x}\) -4 -3 -2 -1 0 0 1 2 3 4  
\(|x - \bar{x}|\) 4 3 2 1 0 0 1 2 3 4 20

Mean (\(\bar{x}\)) = \(\frac{1+2+3+4+5+5+6+7+8+9}{10} = \frac{50}{10} = 5\)

\(MD = \frac{\sum |x - \bar{x}|}{n} = \frac{20}{10} = 2\)