Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

471.

The equation of a circle is \(3x^{2} + 3y^{2} + 24x - 12y = 15\). Find its radius.

A.

2

B.

3

C.

4

D.

5

Correct answer is D

The equation of a circle is given as: \((x - a)^{2} + (y - b)^{2} = r^{2}\)

Expanding, we have: \(x^{2} + y^{2} - 2ax - 2by + a^{2} + b^{2} = r^{2}\)

\(\implies x^{2} + y^{2} - 2ax - 2by = r^{2} - a^{2} - b^{2}\)

Comparing with the given equation: \(3x^{2} + 3y^{2} + 24x - 12y = 15\)

Making the coefficients of \(x^{2}\) and \(y^{2}\) = 1, we have

\(x^{2} + y^{2} + 8x - 4y = 5\)

\(2a = -8 \implies a = -4\)

\(2b = 4 \implies b = 2\)

\(r^{2} - a^{2} - b^{2} = 5 \implies r^{2} = 5 + (-4)^{2} + (2)^{2} = 5 + 16 + 4 = 25\)

\(\therefore r = 5\)

472.

A polynomial is defined by \(f(x + 1) = x^{3} + px^{2} - 4x + 2\), find f(2)

A.

-8

B.

-2

C.

2

D.

8

Correct answer is C

Given: \(f(x + 1) = x^{3} + 3x^{2} - 4x + 2\). 

\(f(2) = f(x + 1) \implies x + 1 = 2; x = 1\)

\(f(2) = 1^{3} + 3(1)^{2} - 4(1) + 2 = 1 + 3 - 4 + 2 = 2\)

473.

If (x + 1) is a factor of the polynomial \(x^{3} + px^{2} + x + 6\). Find the value of p.

A.

-8

B.

-4

C.

4

D.

8

Correct answer is B

If (x + 1) is a factor, then f(-1) = 0.

\((-1)^{3} + p(-1)^{2} + (-1) + 6 = 0\)

\(-1 + p - 1 + 6 = 0 \implies p + 4 = 0\)

\(p = -4\)

474.

QRS is a triangle such that \(\overrightarrow{QR} = (3i + 2j)\) and \(\overrightarrow{SR} = (-5i + 3j)\), find \(\overrightarrow{SQ}\).

A.

8i + j

B.

2i - j

C.

-2i - 3j

D.

-8i - j

Correct answer is A

\(\overrightarrow{SQ} = \overrightarrow{SR} + \overrightarrow{RQ}\)

\(\overrightarrow{RQ} = -\overrightarrow{QR} = - (3i + 2j) = -3i - 2j\)

\(\overrightarrow{SQ} = (-5i + 3j) - 3i - 2j = -8i + j\)

475.

Evaluate \(\log_{10}(\frac{1}{3} + \frac{1}{4}) + 2\log_{10} 2 + \log_{10} (\frac{3}{7})\)

A.

-3

B.

0

C.

\(\frac{5}{6}\)

D.

1

Correct answer is B

\(\log_{10} (\frac{1}{3} + \frac{1}{4}) + 2\log_{10} 2 + \log_{10} (\frac{3}{7})\)

\(\frac{1}{3} + \frac{1}{4} = \frac{7}{12}\)

= \(\log_{10} (\frac{7}{12} \times 2^{2} \times \frac{3}{7})\)

= \(\log_{10} 1 = 0\)