If \(V = \begin{pmatrix} -2 \\ 4 \end{pmatrix}\) and \(U = \begin{pmatrix} -1 \\ 5 \end{pmatrix}\), find \(|U + V|\).

A.

\(3\sqrt{10}\)

B.

\(\sqrt{82}\)

C.

15

D.

\(2\sqrt{5}\)

Correct answer is A

 \(V = \begin{pmatrix} -2 \\ 4 \end{pmatrix}\) and \(U = \begin{pmatrix} -1 \\ 5 \end{pmatrix}\)

\(U + V = \begin{pmatrix} -1 - 2 \\ 5 + 4 \end{pmatrix} = \begin{pmatrix} -3 \\ 9 \end{pmatrix}\)

\(|U + V| = \sqrt{(-3)^{2} + 9^{2}} = \sqrt{9 + 81} = \sqrt{90}\)

= \(sqrt{9 \times 10} = 3\sqrt{10}\)