Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

476.

Given that \(\sin x = \frac{-\sqrt{3}}{2}\) and \(\cos x > 0\), find x

A.

300°

B.

240°

C.

120°

D.

60°

Correct answer is A

In order to do this, simply find the option in the range where only the cos is +ve. This occurs in the range \(270° \leq x \leq 360°\).

Check: \(\sin 300 = - \sin 60 = \frac{-\sqrt{3}}{2}\)

\(\cos 300 = \cos 60 = \frac{1}{2}\)

477.

Given that \(\sqrt{6}, 3\sqrt{2}, 3\sqrt{6}, 9\sqrt{2},...\) are the first four terms of an exponential sequence (G.P), find in its simplest form the 8th term. 

A.

\(27\sqrt{2}\)

B.

\(27\sqrt{6}\)

C.

\(81\sqrt{2}\)

D.

\(81\sqrt{6}\)

Correct answer is C

\(T_{n} = ar^{n - 1}\) (Geometric progression)

\(a = \sqrt{6}, r = \frac{T_{2}}{T_{1}} = \frac{3\sqrt{2}}{\sqrt{6}} \)

\(r = \frac{\sqrt{18}}{\sqrt{6}} = \sqrt{3}\)

\(\therefore T_{8} = (\sqrt{6})(\sqrt{3})^{8 - 1} \)

= \((\sqrt{6})(27\sqrt{3}) = 27\sqrt{18} = 81\sqrt{2}\)

478.

Solve the inequality \(x^{2} - 2x \geq 3\)

A.

\(-1 \leq x \leq 3\)

B.

\(x \geq 3\) and \(x \leq -1\)

C.

\(x \geq 3\) or \(x < -1\)

D.

\(-1 \leq x < 3\)

Correct answer is B

\(x^{2} - 2x \geq 3 \implies x^{2} - 2x - 3 \geq 0\)

\(x^{2} + x - 3x - 3 = (x + 1)(x - 3) \geq 0\) 

\(x = -1 ; x = 3\)

Check: \(x = -1  : (-1)^{2} - 2(-1)  = 1 + 2 \geq 3\)  (satisfied)

\(-1 < x < 3 : 0^{2} - 2(0) = 0 \geq 3\) (not satisfied)

\(x < -1 : (-2)^{2} - 2(-2) = 4 + 4 = 8 \geq 3\) (satisfied)

\(x = 3 : 3^{2} - 2(3) = 9 - 6 = 3 \geq 3\) (satisfied)

\(x > 3 : 4^{2} - 2(4) = 16 - 8 = 8 \geq 3\) (satisfied)

\(\therefore x^{2} - 2x \geq \text{3 is satisfied in the region x} \leq \text{-1 and x} \geq 3\) 

479.

Simplify: \(\frac{\cos 2\theta - 1}{\sin 2\theta}\)

A.

\(-\tan \theta\)

B.

\(-\cos \theta\)

C.

\(\tan \theta\)

D.

\(\cos \theta\)

Correct answer is A

\(\frac{\cos 2\theta - 1}{\sin 2\theta}\)

\(\cos (x + y) = \cos x \cos y - \sin x \sin y \implies \cos 2\theta = \cos^{2} \theta - \sin^{2} \theta\)

\(\cos^{2} \theta = 1 - \sin^{2} \theta \implies \cos 2\theta = 1 - 2\sin^{2} \theta\)

\(\sin 2\theta = 2\sin \theta \cos \theta\)

\(\therefore \frac{\cos 2\theta - 1}{\sin 2\theta} = \frac{1 - 2\sin^{2}\theta - 1}{2\sin \theta \cos \theta}\)

= \(\frac{-2 \sin^{2} \theta}{2\sin \theta \cos \theta} = \frac{- \sin \theta}{\cos \theta}\)

= \(-\tan \theta\)

480.

Which of the following sets is equivalent to \((P \cup Q) \cap (P \cup Q')\)?

A.

P

B.

\(P \cap Q\)

C.

\(P \cup Q\)

D.

\(\emptyset\)

Correct answer is A

No explanation has been provided for this answer.