Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

431.

\(f(x) = p + qx\), where p and q are constants. If f(1) = 7 and f(5) = 19, find f(3).

A.

13

B.

15

C.

17

D.

26

Correct answer is A

\(f(x) = p + qx\)

\(f(1) = p + q(1) \implies p + q = 7 .... (1)\)

\(f(5) = p + 5q = 19 .....(2)\)

Solving for p and q using simultaneous equation, p = 4, q = 3

\(f(3) = 4 + 3(3) = 13\)

432.

The equation of a circle is \(3x^{2} + 3y^{2} + 6x - 12y + 6 = 0\). Find its radius

A.

1

B.

\(\sqrt{3}\)

C.

\(\sqrt{11}\)

D.

\(\sqrt{6}\)

Correct answer is B

The equation of a circle is given as \((x - a)^{2} + (y - b)^{2} = r^{2}\)

Expanding this, we have \(x^{2} + y^{2} - 2ax - 2by + a^{2} + b^{2} = r^{2}\)

Comparing with the given equation, \(3x^{2} + 3y^{2} + 6x -12y + 6 = 0 \equiv x^{2} + y^{2} + 2x - 4y + 2 = 0\) (making the coefficients of \(x^{2}\) and \(y^{2}\) = 1 , we get that

\(-2a = 2 \implies a = -1\)

\(2b = 4 \implies b = 2\)

\(r^{2} - a^{2} - b^{2} = -2\)

\(\therefore r^{2} - (-1)^{2} - (2)^{2} = -2 \implies r^{2} = -2 + 1 + 4 = 3\)

\(r = \sqrt{3}\)

433.

Solve \(3x^{2} + 4x + 1 > 0\)

A.

\(x < -1, x < -\frac{1}{3}\)

B.

\(x > -1, x > -\frac{1}{3}\)

C.

\(x > \frac{1}{3}, x < -1\)

D.

\(x < \frac{1}{3}, x > -1\)

Correct answer is B

\(3x^{2} + 4x + 1 > 0 \)

\(3x^{2} + 3x + x + 1 > 0\)

\(3x(x + 1) + 1(x + 1) > 0\)

\((3x + 1)(x + 1) > 0\)

\(3x + 1 > 0 \implies 3x > -1 \)

\(x > -\frac{1}{3}\)

\(x + 1 > 0 \implies x > -1\)

\(x > -1, x > -\frac{1}{3}\)

434.

Simplify \(\sqrt[3]{\frac{8}{27}} - (\frac{4}{9})^{-\frac{1}{2}}\)

A.

\(\frac{-5}{6}\)

B.

\(-\frac{4}{27}\)

C.

\(0\)

D.

\(\frac{2}{9}\)

Correct answer is A

\(\sqrt[3]{\frac{8}{27}} - (\frac{4}{9})^{\frac{-1}{2}} \)

\(\frac{2}{3} - (\frac{9}{4})^{\frac{1}{2}}\)

= \(\frac{2}{3} - \frac{3}{2}\)

= \(\frac{-5}{6}\)

435.

A function is defined by \(f(x) = \frac{3x + 1}{x^{2} - 1}, x \neq \pm 1\). Find f(-3).

A.

\(-1\frac{1}{4}\)

B.

\(-1\)

C.

\(\frac{4}{5}\)

D.

\(1\)

Correct answer is B

\(f(x) = \frac{3x + 1}{x^{2} - 1}\)

\(f(-3) = \frac{3(-3) + 1}{(-3)^{2} - 1} = \frac{-8}{8} = -1\)