\(x < -1, x < -\frac{1}{3}\)
\(x > -1, x > -\frac{1}{3}\)
\(x > \frac{1}{3}, x < -1\)
\(x < \frac{1}{3}, x > -1\)
Correct answer is B
\(3x^{2} + 4x + 1 > 0 \)
\(3x^{2} + 3x + x + 1 > 0\)
\(3x(x + 1) + 1(x + 1) > 0\)
\((3x + 1)(x + 1) > 0\)
\(3x + 1 > 0 \implies 3x > -1 \)
\(x > -\frac{1}{3}\)
\(x + 1 > 0 \implies x > -1\)
\(x > -1, x > -\frac{1}{3}\)
Marks 2 3 4 5 6 7 8 No of students 5 7 9 6 3 6 4 The table above sho...
Find the value of the derivative of y = 3x\(^2\) (2x +1) with respect to x at the point x = 2. ...
Given that \(p = \begin{bmatrix} x&4\\3&7\end{bmatrix} Q =\begin{bmatrix} x&3\\1&2x\...
Find the derivative of \(\sqrt[3]{(3x^{3} + 1}\) with respect to x....
Determine the coefficient of \(x^{2}\) in the expansion of \((a + 3x)^{6}\)...
If \(y = 2(2x + \sqrt{x})^{2}\), find \(\frac{\mathrm d y}{\mathrm d x}\)....
Which of the following is the semi-interquartile range of a distribution? ...