Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

426.

A line is perpendicular to \(3x - y + 11 = 0\) and passes through the point (1, -5). Find its equation.

A.

3y - x -14 = 0

B.

3x + y + 1 = 0

C.

3y + x + 1 = 0

D.

3y + x + 14 = 0

Correct answer is D

\(3x - y + 11 = 0 \implies y = 3x + 11\)

\(Gradient = 3\)

Gradient of perpendicular line = \(\frac{-1}{3}\)

\(\therefore \frac{y - (-5)}{x - 1} = \frac{-1}{3}\)

\(3(y + 5) = 1 - x\)

\(3y + x + 15 - 1 = 3y + x + 14 = 0\)

427.

If \(y^{2} + xy - x = 0\), find \(\frac{\mathrm d y}{\mathrm d x}\).

A.

\(\frac{1 - y}{2y}\)

B.

\(\frac{1 - 2y}{x}\)

C.

\(\frac{1 - y}{x + 2y}\)

D.

\(\frac{1}{x + 2y}\)

Correct answer is C

Given \(y^{2} + xy - x = 0\)

Using the method of implicit differentiation, we have

\(2y\frac{\mathrm d y}{\mathrm d x} + x\frac{\mathrm d y}{\mathrm d x} + y - 1 = 0\)

\(\frac{\mathrm d y}{\mathrm d x}(2y + x) = 1 - y\)

\(\frac{\mathrm d y}{\mathrm d x} = \frac{1 - y}{x + 2y}\)

428.

Find \(\lim \limits_{x \to 3} \frac{x + 3}{x^{2} - x - 12}\)

A.

-1

B.

\(\frac{-1}{7}\)

C.

\(\frac{1}{7}\)

D.

1

Correct answer is A

\(\lim \limits_{x \to 3} \frac{x + 3}{x^{2} - x - 12} = \frac{3 + 3}{3^{2} - 3 - 12}\)

= \(\frac{6}{-6} = -1\)

429.

\(f(x) = (x^{2} + 3)^{2}\) is defines on the set of real numbers, R. Find the gradient of f(x) at x = \(\frac{1}{2}\)

A.

4.0

B.

6.5

C.

5.0

D.

10.6

Correct answer is B

\(f(x) = (x^{2} + 3)^{2}\)

Using the chain rule, \(\frac{\mathrm d y}{\mathrm d x} = \frac{\mathrm d y}{\mathrm d u} \times \frac{\mathrm d u}{\mathrm d x}\)

Let \(u = x^{2} + 3\) so that \(y = u^{2}\)

\(\frac{\mathrm d y}{\mathrm d u} = 2u\)

\(\frac{\mathrm d u}{\mathrm d x} = 2x\)

\(\therefore \frac{\mathrm d y}{\mathrm d x} = 2u(2x) = 4xu\)

But \(u = x^{2} + 3\),

\(\frac{\mathrm d y}{\mathrm d x} = 4x(x^{2} + 3)\)

At \(x = \frac{1}{2}, \frac{\mathrm d y}{\mathrm d x} = 4(\frac{1}{2})((\frac{1}{2})^{2} + 3)\)

= \(2 \times \frac{13}{4} = \frac{13}{2} = 6.5\)

430.

The sum and product of the roots of a quadratic equation are \(\frac{4}{7}\) and \(\frac{5}{7}\) respectively. Find its equation.

A.

\(7x^{2} - 4x - 5 = 0\)

B.

\(7x^{2} - 4x + 5 = 0\)

C.

\(7x^{2} + 4x - 5 = 0\)

D.

\(7x^{2} + 4x + 5 = 0\)

Correct answer is B

Let the roots of the equation be \(\alpha\) and \(\beta\).

\(\alpha + \beta = \frac{-b}{a} = \frac{4}{7}\)

\(\alpha \beta = \frac{c}{a} = \frac{5}{7}\)

\(\implies a = 7, b = -4, c = 5\)

Equation: \(ax^{2} + bx + c = 0 \)

= \(7x^{2} - 4x + 5 = 0\)