Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

356.

Given \(\sin \theta =  \frac{\sqrt{3}}{2}, 0° \leq \theta \leq 90°\), find \(\tan 2\theta\) in surd form

A.

\(- \sqrt{3}\)

B.

\(-\frac{\sqrt{3}}{2}\)

C.

\(\frac{\sqrt{3}}{2}\)

D.

\(\sqrt{3}\)

Correct answer is A

\(\sin \theta = \frac{\sqrt{3}}{2} \implies opp = \sqrt{3}; hyp = 2\)

\(adj^{2} = 2^{2} - (\sqrt{3})^{2} = 1 \implies adj = 1\)

\(\cos \theta = \frac{1}{2}\)

\(\sin 2\theta = \sin (180 - \theta) = \sin \theta = \frac{\sqrt{3}}{2}\)

\(\cos 2\theta = \cos (180 - \theta) = -\cos \theta = -\frac{1}{2}\)

\(\tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta} = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\)

= \(- \sqrt{3}\)

357.

The coordinates of the centre of a circle is (-2, 3). If its area is \(25\pi cm^{2}\), find its equation. 

A.

\(x^{2} + y^{2} - 4x - 6y - 12 = 0\)

B.

\(x^{2} + y^{2} - 4x + 6y - 12 = 0\)

C.

\(x^{2} + y^{2} + 4x + 6y - 12 = 0\)

D.

\(x^{2} + y^{2} + 4x - 6y - 12 = 0\)

Correct answer is D

Equation of a circle with centre coordinates (a, b) : \((x - a)^{2} + (y - b)^{2} = r^{2}\)

Area of circle = \(\pi r^{2} = 25\pi cm^{2} \implies r^{2} = 25 \)

\(\therefore r = 5cm\)

(a, b) = (-2, 3)

Equation: \((x - (-2))^{2} + (y - 3)^{2} = 5^{2}\)

\(x^{2} + 4x + 4 + y^{2} - 6y + 9 = 25 \implies x^{2} + y^{2} + 4x - 6y + 13 - 25 = 0\)

= \(x^{2} + y^{2} + 4x - 6y - 12 = 0\)

358.

The line \(y = mx - 3\) is a tangent to the curve \(y = 1 - 3x + 2x^{3}\) at (1, 0). Find the value of the constant m.

A.

-4

B.

-1

C.

3

D.

4

Correct answer is C

\(y = 1 - 3x + 2x^{3}\)

\(\frac{\mathrm d y}{\mathrm d x} = -3 + 6x^{2}\)

At (1, 0), \(\frac{\mathrm d y}{\mathrm d x} = -3 + 6(1^{2}) = -3 + 6 = 3\)

\(y = mx - 3 \implies \frac{\mathrm d y}{\mathrm d x} = m = 3\) (Tangent with equal gradient)

359.

If (x + 3) is a factor of the polynomial \(x^{3} + 3x^{2} + nx - 12\), where n is a constant, find the value of n.

A.

-1

B.

-2

C.

-3

D.

-4

Correct answer is D

\(x + 3 = 0 \implies x = -3\)

Using remainder theorem, if x + 3 is a factor, f(-3) = 0.

\(f(-3) = (-3)^{3} + 3(-3)^{2} + n(-3) - 12 = 0\)

\(-27 + 27 - 3n - 12 = 0 \implies -3n = 12\)

\(n = -4\)

360.

Solve \(x^{2} - 2x - 8 > 0\).

A.

x < -4 or x > 2

B.

x < -2 or x > 4

C.

-2 < x < 4

D.

-4 < x < 2

Correct answer is B

No explanation has been provided for this answer.