\(x^{2} + y^{2} - 4x - 6y - 12 = 0\)
\(x^{2} + y^{2} - 4x + 6y - 12 = 0\)
\(x^{2} + y^{2} + 4x + 6y - 12 = 0\)
\(x^{2} + y^{2} + 4x - 6y - 12 = 0\)
Correct answer is D
Equation of a circle with centre coordinates (a, b) : \((x - a)^{2} + (y - b)^{2} = r^{2}\)
Area of circle = \(\pi r^{2} = 25\pi cm^{2} \implies r^{2} = 25 \)
\(\therefore r = 5cm\)
(a, b) = (-2, 3)
Equation: \((x - (-2))^{2} + (y - 3)^{2} = 5^{2}\)
\(x^{2} + 4x + 4 + y^{2} - 6y + 9 = 25 \implies x^{2} + y^{2} + 4x - 6y + 13 - 25 = 0\)
= \(x^{2} + y^{2} + 4x - 6y - 12 = 0\)
The table shows the mark obtained by students in a test. Marks 1 2 3 4 5 Frequency ...
If \(2\log_{4} 2 = x + 1\), find the value of x....
The inverse of a function is given by \(f^{-1} : x \to \frac{x + 1}{4}\)....
Given that \(y = x(x + 1)^{2}\), calculate the maximum value of y....
Find the median of the numbers 9,7, 5, 2, 12,9,9, 2, 10, 10, and 18. ...
\(P = {x : 1 \leq x \leq 6}\) and \(Q = {x : 2 < x < 9}\) where \(x \in R\), find \(P \cap Q\)...
Find the fourth term of the binomial expansion of \((x - k)^{5}\) in descending powers of x....