The line \(y = mx - 3\) is a tangent to the curve \(y = 1 - 3x + 2x^{3}\) at (1, 0). Find the value of the constant m.

A.

-4

B.

-1

C.

3

D.

4

Correct answer is C

\(y = 1 - 3x + 2x^{3}\)

\(\frac{\mathrm d y}{\mathrm d x} = -3 + 6x^{2}\)

At (1, 0), \(\frac{\mathrm d y}{\mathrm d x} = -3 + 6(1^{2}) = -3 + 6 = 3\)

\(y = mx - 3 \implies \frac{\mathrm d y}{\mathrm d x} = m = 3\) (Tangent with equal gradient)