Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.
254−m
254−2m
254+m
254+2m
Correct answer is A
2x2−5x+m=0
a=2,b=−5,c=m
α+β=−ba=52
αβ=ca=m2
α2+β2=(α+β)2−2αβ
= (52)2−2(m2)
= 254−m
Express 23−√7 in the forma+√b, where a and b are integers.
6+√7
3+√7
3−√7
6−√7
Correct answer is B
Rationalizing 23−√7 by multiplying through with 3+√7,
23−√7(3+√7)(3+√7)=6+2√79−7
= 6+2√72=3+√7
Which of the following binary operations is not commutative?
a∗b=1a+1b
a∗b=a+b−ab
a∗b=2a+2b+ab
a∗b=a−b+ab
Correct answer is D
All other options given are commutative i.e. a∗b=b∗a, except option D.
a∗b=a−b+ab
b∗a=b−a+ba
a−b=−(b−a)≠b−a
Find the coefficient of x4 in the binomial expansion of (2+x)6
120
80
60
15
Correct answer is C
(2+x)6
x4=6C2(22)(x4)=15×4=60
Given \sin \theta = \frac{\sqrt{3}}{2}, 0° \leq \theta \leq 90°, find \tan 2\theta in surd form
- \sqrt{3}
-\frac{\sqrt{3}}{2}
\frac{\sqrt{3}}{2}
\sqrt{3}
Correct answer is A
\sin \theta = \frac{\sqrt{3}}{2} \implies opp = \sqrt{3}; hyp = 2
adj^{2} = 2^{2} - (\sqrt{3})^{2} = 1 \implies adj = 1
\cos \theta = \frac{1}{2}
\sin 2\theta = \sin (180 - \theta) = \sin \theta = \frac{\sqrt{3}}{2}
\cos 2\theta = \cos (180 - \theta) = -\cos \theta = -\frac{1}{2}
\tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta} = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}
= - \sqrt{3}