Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

341.

Evaluate \(\int_{1}^{2} [\frac{x^{3} - 1}{x^{2}}] \mathrm {d} x\)

A.

0.5

B.

1.0

C.

1.5

D.

2.0

Correct answer is B

\(\frac{x^{3} - 1}{x^{2}} \equiv x - \frac{1}{x^{2}} = x - x^{-2}\)

\(\int_{1}^{2} (x - x^{-2}) \mathrm {d} x = (\frac{x^{2}}{2} + \frac{1}{x})|_{1}^{2}\)

= \((\frac{2^{2}}{2} + \frac{1}{2}) - (\frac{1^{2}}{2} + \frac{1}{1})\)

= \((2 + \frac{1}{2}) - (\frac{1}{2} + 1)\)

= \(2\frac{1}{2} - 1\frac{1}{2}\)

= \(1.0\)

342.

If \(\frac{^{8}P_{x}}{^{8}C_{x}} = 6\), find the value of x.

A.

1

B.

2

C.

3

D.

6

Correct answer is C

\(\frac{^{8}P_{x}}{^{8}C_{x}} = \frac{8!}{(8 - x)!} ÷ \frac{8!}{(8 - x)! x!} = 6\)

\(\frac{8!}{(8 - x)!} \times \frac{(8 - x)! x!}{8!} = x! = 6\)

\(x = 3\)

343.

Given that \(\log_{3}(x - y) = 1\) and \(\log_{3}(2x + y) = 2\), find the value of x

A.

1

B.

2

C.

3

D.

4

Correct answer is D

\(\log_{3}(x - y) = 1 \implies x - y = 3^{1} = 3 .... (1)\)

\(\log_{3}(2x + y) = 2 \implies 2x + y = 3^{2} = 9 ..... (2)\)

From (1), y = x - 3

From (2), y = 9 - 2x

\(\implies 9 - 2x = x - 3\)

\(9 + 3 = x + 2x = 3x\)

\(x = 4\)

344.

Simplify \((216)^{-\frac{2}{3}} \times (0.16)^{-\frac{3}{2}}\)

A.

\(\frac{125}{288}\)

B.

\(\frac{2}{125}\)

C.

\(\frac{4}{225}\)

D.

\(\frac{2}{225}\)

Correct answer is A

\((216)^{-\frac{2}{3}} = (\frac{1}{216})^{\frac{2}{3}} = (\sqrt[3]{\frac{1}{216}})^{2} = (\frac{1}{6})^{2} = \frac{1}{36}\)

\((0.16)^{-\frac{3}{2}} = (\frac{100}{16})^{\frac{3}{2}} = (\sqrt{100}{16})^{3} = \frac{1000}{64}\)

\(\frac{1}{36} \times \frac{1000}{64} = \frac{125}{288}\)

345.

The derivative of a function f with respect to x is given by \(f'(x) = 3x^{2} - \frac{4}{x^{5}}\). If \(f(1) = 4\), find f(x).

A.

\(f(x) = x^{3} - \frac{1}{x^{4}} + 2\)

B.

\(f(x) = x^{3} + \frac{1}{x^{4}} + 2\)

C.

\(f(x) = x^{3} - \frac{1}{x^{4}} - 2 \)

D.

\(f(x) = x^{3} + \frac{1}{x^{4}} - 2\)

Correct answer is B

\(\frac{\mathrm d y}{\mathrm d x} = 3x^{2} - \frac{4}{x^5} = 3x^{2} - 4x^{-5}\)

\(y = \int (3x^{2} - 4x^{-5}) \mathrm {d} x \)

\(y = x^{3} + \frac{1}{x^{4}} + c\)

f(1) = 4; \(4 = 1^{3} + \frac{1}{1^{4}} + c \implies 4 = 2 + c\)

\(c = 2\)

\(f(x) = x^{3} + \frac{1}{x^{4}} + 2\)