Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

361.

What is the angle between \(a = (3i - 4j)\) and \(b = (6i + 4j)\)?

A.

13°

B.

87°

C.

100°

D.

110°

Correct answer is B

\(a . b = |a||b| \cos \theta\)

\(a = 3i - 4j; b = 6i + 4j\)

\(18 - 16 = (\sqrt{3^{2} + (-4)^{2}})(\sqrt{6^{2} + 4^{2}}) \cos \theta\)

\(2 = 5\sqrt{52} \cos \theta\)

\(\cos \theta = \frac{2}{5\sqrt{52}} = 0.0555\)

\(\theta = 86.8° \approxeq 87°\)

362.

Simplify \((1 + 2\sqrt{3})^{2} - (1 - 2\sqrt{3})^{2}\)

A.

0

B.

\(8\sqrt{3}\)

C.

13

D.

\(2 - 4\sqrt{3}\)

Correct answer is B

\((1 + 2\sqrt{3})^{2} = 1 + 4\sqrt{3} + 12 = 13 + 4\sqrt{3}\)

\((1 - 2\sqrt{3})^{2} = 1 - 4\sqrt{3} + 12 = 13 - 4\sqrt{3}\)

\(13 + 4\sqrt{3} - (13 - 4\sqrt{3}) = 13 + 4\sqrt{3} - 13 + 4\sqrt{3}\)

= \(8\sqrt{3}\) 

363.

Find the maximum value of \(2 + \sin (\theta + 25)\).

A.

1

B.

2

C.

3

D.

4

Correct answer is C

\(\sin \theta \leq 1\)

i.e Maximum value of \(\sin \theta \forall \theta = 1\).

Therefore, \(2 + \sin \theta \leq 2 + 1 = 3\)

364.

The initial velocity of an object is \(u = \begin{pmatrix} -5 \\ 3 \end{pmatrix} ms^{-1}\). If the acceleration of the object is \(a = \begin{pmatrix} 3 \\ -4 \end{pmatrix} ms^{-2}\) and it moved for 3 seconds, find the final velocity.

A.

\(\begin{pmatrix} -14 \\ 15 \end{pmatrix} ms^{-1}\)

B.

\(\begin{pmatrix} -2 \\ 1 \end{pmatrix} ms^{-1}\)

C.

\(\begin{pmatrix} 4 \\ -9 \end{pmatrix} ms^{-1}\)

D.

\(\begin{pmatrix} 14 \\ -9 \end{pmatrix} ms^{-1}\)

Correct answer is C

\(u = \begin{pmatrix} -5 \\ 3 \end{pmatrix} ms^{-1}\)

\(a = \begin{pmatrix} 3 \\ -4 \end{pmatrix} ms^{-2}; t = 3 secs\)

\(v = u + at \implies v = \begin{pmatrix} -5 \\ 3 \end{pmatrix} + \begin{pmatrix} 3 \\ -4 \end{pmatrix} \times 3\)

= \(\begin{pmatrix} -5 \\ 3 \end{pmatrix} + \begin{pmatrix} 9 \\ -12 \end{pmatrix} = \begin{pmatrix} 4 \\ -9 \end{pmatrix} ms^{-1}\)\)

365.