\(6 + \sqrt{7}\)
\(3 + \sqrt{7}\)
\(3 - \sqrt{7}\)
\(6 - \sqrt{7}\)
Correct answer is B
Rationalizing \(\frac{2}{3 - \sqrt{7}}\) by multiplying through with \(3 + \sqrt{7}\),
\(\frac{2}{3 - \sqrt{7}} \frac{(3 + \sqrt{7})}{(3 + \sqrt{7})} = \frac{6 + 2\sqrt{7}}{9 - 7}\)
= \(\frac{6 + 2\sqrt{7}}{2} = 3 + \sqrt{7}\)
The distance between P(x, 7) and Q(6, 19) is 13 units. Find the values of x. ...
Given that \(f : x \to x^{2}\) and \(g : x \to x + 3\), where \(x \in R\), find \(f o g(2)\)....
Evaluate \(\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3}\)...
Simplify \(\frac{\sqrt{3}}{\sqrt{3} - 1} + \frac{\sqrt{3}}{\sqrt{3} +1}\)...
If \(g(x) = \frac{x + 1}{x - 2}, x \neq -2\), find \(g^{-1}(2)\)....