\(- \sqrt{3}\)
\(-\frac{\sqrt{3}}{2}\)
\(\frac{\sqrt{3}}{2}\)
\(\sqrt{3}\)
Correct answer is A
\(\sin \theta = \frac{\sqrt{3}}{2} \implies opp = \sqrt{3}; hyp = 2\)
\(adj^{2} = 2^{2} - (\sqrt{3})^{2} = 1 \implies adj = 1\)
\(\cos \theta = \frac{1}{2}\)
\(\sin 2\theta = \sin (180 - \theta) = \sin \theta = \frac{\sqrt{3}}{2}\)
\(\cos 2\theta = \cos (180 - \theta) = -\cos \theta = -\frac{1}{2}\)
\(\tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta} = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\)
= \(- \sqrt{3}\)
In the diagram, a ladder PS leaning against a vertical wall PR makes angle x° with the horizonta...
Given that \(\frac{8x+m}{x^2-3x-4} ≡ \frac{5}{x+1} + \frac{3}{x-4}\)...
The inverse of a function is given by \(f^{-1} : x \to \frac{x + 1}{4}\)....
Find the unit vector in the direction of \(-2i + 5j\)....
Which of the following is the semi-interquartile range of a distribution? ...