- \sqrt{3}
-\frac{\sqrt{3}}{2}
\frac{\sqrt{3}}{2}
\sqrt{3}
Correct answer is A
\sin \theta = \frac{\sqrt{3}}{2} \implies opp = \sqrt{3}; hyp = 2
adj^{2} = 2^{2} - (\sqrt{3})^{2} = 1 \implies adj = 1
\cos \theta = \frac{1}{2}
\sin 2\theta = \sin (180 - \theta) = \sin \theta = \frac{\sqrt{3}}{2}
\cos 2\theta = \cos (180 - \theta) = -\cos \theta = -\frac{1}{2}
\tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta} = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}
= - \sqrt{3}
If (2t - 3s)(t - s) = 0, find \frac{t}{s}...
If y = 4x - 1, list the range of the domain {-2 \leq x \leq 2}, where x is an integer....
The gradient of a curve at the point (-2, 0) is 3x^{2} - 4x. Find the equation of the curve....
>Evaluate: \int(2x + 1)^3 dx...
Evaluate \int_{-2}^{3} (3x^{2} - 2x - 12) \mathrm {d} x...
If f : x → 2 tan x and g : x → √(x^2 + 8), find ( g o f )(45^o)...
If \(\begin{vmatrix} k & k \\ 4 & k \end{vmatrix} + \begin{vmatrix} 2 & 3 \\...