\(\frac{125}{288}\)
\(\frac{2}{125}\)
\(\frac{4}{225}\)
\(\frac{2}{225}\)
Correct answer is A
\((216)^{-\frac{2}{3}} = (\frac{1}{216})^{\frac{2}{3}} = (\sqrt[3]{\frac{1}{216}})^{2} = (\frac{1}{6})^{2} = \frac{1}{36}\)
\((0.16)^{-\frac{3}{2}} = (\frac{100}{16})^{\frac{3}{2}} = (\sqrt{100}{16})^{3} = \frac{1000}{64}\)
\(\frac{1}{36} \times \frac{1000}{64} = \frac{125}{288}\)