\(\frac{125}{288}\)
\(\frac{2}{125}\)
\(\frac{4}{225}\)
\(\frac{2}{225}\)
Correct answer is A
\((216)^{-\frac{2}{3}} = (\frac{1}{216})^{\frac{2}{3}} = (\sqrt[3]{\frac{1}{216}})^{2} = (\frac{1}{6})^{2} = \frac{1}{36}\)
\((0.16)^{-\frac{3}{2}} = (\frac{100}{16})^{\frac{3}{2}} = (\sqrt{100}{16})^{3} = \frac{1000}{64}\)
\(\frac{1}{36} \times \frac{1000}{64} = \frac{125}{288}\)
Evaluate \(\frac{\tan 120° + \tan 30°}{\tan 120° - \tan 60°}\)...
Solve: \(\sin \theta = \tan \theta\)...
Given that \(3x + 4y + 6 = 0\) and \(4x - by + 3 = 0\) are perpendicular, find the value of b....
Two forces, each of magnitude 16 N, are inclined to each other at an angle of 60°. Calculate the...