Simplify \((216)^{-\frac{2}{3}} \times (0.16)^{-\frac{3}{2}}\)

A.

\(\frac{125}{288}\)

B.

\(\frac{2}{125}\)

C.

\(\frac{4}{225}\)

D.

\(\frac{2}{225}\)

Correct answer is A

\((216)^{-\frac{2}{3}} = (\frac{1}{216})^{\frac{2}{3}} = (\sqrt[3]{\frac{1}{216}})^{2} = (\frac{1}{6})^{2} = \frac{1}{36}\)

\((0.16)^{-\frac{3}{2}} = (\frac{100}{16})^{\frac{3}{2}} = (\sqrt{100}{16})^{3} = \frac{1000}{64}\)

\(\frac{1}{36} \times \frac{1000}{64} = \frac{125}{288}\)