\( \frac{7}{36}\)
-\( \frac{36}{7}\)
\(\frac{36}{7}\)
-\( \frac{7}{36}\)
Correct answer is D
The general form of a quadratic equation is:
\(x^2\) -(sum of roots)\(x\) +(product of roots) = 0
\(7x^2+12x-4=0\)
Divide through by 7
=\(x^2+\frac{12}{7}x-\frac{4}{7}=0\)
=\(x^2-(-\frac{12}{7})x+(-\frac{4}{7})=0\)
\(\therefore\) sum of roots = \(-\frac{12}{7}\), and products of roots =\(-\frac{4}{7}\)
α + β = \(-\frac{12}{7}, αβ = -\frac{4}{7}\)
\(\frac{αβ}{(α + β)^2} = \frac{\frac{-4}{7}}{(\frac{-12}{7})^2}\)
=\(\frac{\frac{-4}{7}}{\frac{144}{49}}=-\frac{4}{7}\times\frac{49}{144}\)
\(\therefore - \frac{7}{36}\)
Simplify \(\frac{\tan 80° - \tan 20°}{1 + \tan 80° \tan 20°}\)...
If \(y = 4x - 1\), list the range of the domain \({-2 \leq x \leq 2}\), where x is an integer....
The fourth term of a geometric sequence is 2 and the sixth term is 8. Find the common ratio. ...
Calculate the variance of \(\sqrt{2}\), (1 + \(\sqrt{2}\)) and (2 + \(\sqrt{2}\)) ...
Find the radius of the circle \(x^{2} + y^{2} - 8x - 2y + 1 = 0\)....
If \(\sin x = -\sin 70°, 0° < x < 360°\), determine the two possible values of x....