\frac{7}{36}
- \frac{36}{7}
\frac{36}{7}
- \frac{7}{36}
Correct answer is D
The general form of a quadratic equation is:
x^2 -(sum of roots)x +(product of roots) = 0
7x^2+12x-4=0
Divide through by 7
=x^2+\frac{12}{7}x-\frac{4}{7}=0
=x^2-(-\frac{12}{7})x+(-\frac{4}{7})=0
\therefore sum of roots = -\frac{12}{7}, and products of roots =-\frac{4}{7}
α + β = -\frac{12}{7}, αβ = -\frac{4}{7}
\frac{αβ}{(α + β)^2} = \frac{\frac{-4}{7}}{(\frac{-12}{7})^2}
=\frac{\frac{-4}{7}}{\frac{144}{49}}=-\frac{4}{7}\times\frac{49}{144}
\therefore - \frac{7}{36}
Find the values of x at the point of intersection of the curve y = x^{2} + 2x - 3 and the lines ...
Given that r = (10 N , 200º) and n = (16 N , 020º), find (3r - 2n). ...
The roots of the equation 2x^{2} + kx + 5 = 0 are \alpha and \beta, where k is a constan...
Evaluate \int^1_0 x(x^2-2)^2 dx...
If (2x^{2} - x - 3) is a factor of f(x) = 2x^{3} - 5x^{2} - x + 6, find the other factor...
Simplify \frac{\sqrt{3}}{\sqrt{3} -1} + \frac{\sqrt{3}}{\sqrt{3} + 1}...
The sum of the first n terms of a linear sequence is S_{n} = n^{2} + 2n. Determine the general t...
Find the equation of a circle with centre (-3, -8) and radius 4\sqrt{6}...
Face 1 2 3 4 5 6 Frequency 12 18 y 30 2y 45 Given the table abov...