\(8(2x + 1)^2 + k\)
\(6(2x + 1)^2 + k\)
\(\frac{1}{8} (2x + 1)^4 + k\)
\(\frac{1}{6} (2x + 1)^4 + k\)
Correct answer is C
Using substitution method, Let \(u = 2x + 1\)
\(\frac{du}{dx}=2==>du=2dx==>dx=\frac{du}{2}\)
=\(\int\frac{u^3}{2} du = \frac{1}{2}\int u^3 du\)
=\(\frac{1}{2}(\frac{u^4}{4})=\frac{u^4}{8}\)
\(\therefore\frac{1}{8} (2x + 1)^4 + k\)
Find the coefficient of \(x^{3}\) in the expansion of \([\frac{1}{3}(2 + x)]^{6}\)...
Find the sum of the first 20 terms of the sequence -7-3, 1, ...... ...
If \(P = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}\), find \((P^{2} + P)\)....
Find the direction cosines of the vector \(4i - 3j\)....
Simplify \(\frac{1}{(1-\sqrt{3})^{2}}\)...
Marks 0 1 2 3 4 5 Number of candidates 6 4 8 10 9 3 The table abov...
Given \(\begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} -6 \\ k...