Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

696.

The 3rd and 7th term of a Geometric Progression (GP) are 81 and 16. Find the 5th term.

A.

\(\frac{4}{729}\)

B.

\(\frac{81}{16}\)

C.

27

D.

36

Correct answer is D

The nth term of a GP is given by: \(T_{n} = ar^{n-1}\).

\(T_{3} = ar^{3-1} = ar^{2} = 81\).......(1)

\(T_{7} = ar^{7-1} = ar^{6} = 16 \) ...... (2)

Dividing (2) by (1), we have \(r^{4} = \frac{16}{81} = (\frac{2}{3})^{4} \implies r = \frac{2}{3}\)

Putting \(r = \frac{2}{3}\) in equation (1), we have \(81 = a \times (\frac{2}{3}\)^{2} = a \times \frac{4}{9} \implies a = \frac{729}{4}\)

\(T_{5} = ar^{5-1} = ar^{4} = \frac{729}{4} \times (\frac{2}{3})^{4}\)

= \(\frac{729}{4} \times \frac{16}{81} = 36\)

697.

There are 7 boys in a class of 20. Find the number of ways of selecting 3 girls and 2 boys

A.

1638

B.

2730

C.

6006

D.

7520

Correct answer is C

No of boys in the class = 7; Girls = 20-7 = 13

No of selection = \(^{13}C_{3} \times ^{7}C_{2} = \frac{13!}{(13-3)!3!} \times \frac{7!}{(7-2)!2!}\)

= \(286\times21 = 6006\)

698.

Simplify \(\frac{\sqrt{128}}{\sqrt{32} - 2\sqrt{2}}\)

A.

\(2\sqrt{2}\)

B.

\(3\sqrt{2}\)

C.

3

D.

4

Correct answer is D

\(\sqrt{128}  = \sqrt{64\times2} = 8\sqrt{2}\)

\(\sqrt{32} = \sqrt{16\times2} = 4\sqrt{2}\)

Simplifying, we have \(\frac{8\sqrt{2}}{4\sqrt{2} - 2\sqrt{2}} = \frac{8\sqrt{2}}{2\sqrt{2}}\)

= 4

699.

Evaluate \(\int_{-1}^{0} (x+1)(x-2) \mathrm{d}x\)

A.

\(\frac{7}{6}\)

B.

\(\frac{5}{6}\)

C.

\(\frac{-5}{6}\)

D.

\(\frac{-7}{6}\)

Correct answer is D

Expanding \((x+1)(x-2) = x^{2} - 2x + x - 2 = x^{2} - x - 2\)

\(\int_{-1}^{0} (x^{2} - x - 2) \mathrm{d}x = [\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2x]_{-1}^{0}\)

= \([\frac{0}{3} - \frac{0}{2} - 2\times0 - (\frac{-1^{3}}{3} - \frac{-1^{2}}{2} - 2\times-1)]\)

= \(0 + \frac{1}{3} + \frac{1}{2} - 2 = \frac{-7}{6}\)

Note: This can also be solved using integration by parts. 

\(\int uv \mathrm{d}x = u\int v \mathrm{d}x - \int u'(\int v \mathrm{d}x)\mathrm{d}x\).

700.

If \(y = \frac{1+x}{1-x}\), find \(\frac{dy}{dx}\).

A.

\(\frac{2}{(1-x)^{2}}\)

B.

\(\frac{-2}{(1-x)^{2}}\)

C.

\(\frac{-1}{\sqrt{1-x}}\)

D.

\(\frac{1}{\sqrt{1-x}}\)

Correct answer is A

\(y = \frac{1+x}{1-x}\)

Using quotient rule, \(\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^{2}}\), we have

\(\frac{dy}{dx} = \frac{(1-x)(1) - (1+x)(-1)}{(1-x)^{2}} = \frac{(1 - x +1 +x)}{(1-x)^{2}}\)

= \(\frac{2}{(1-x)^{2}}\).