\(2\sqrt{2}\)
\(3\sqrt{2}\)
3
4
Correct answer is D
\(\sqrt{128} = \sqrt{64\times2} = 8\sqrt{2}\)
\(\sqrt{32} = \sqrt{16\times2} = 4\sqrt{2}\)
Simplifying, we have \(\frac{8\sqrt{2}}{4\sqrt{2} - 2\sqrt{2}} = \frac{8\sqrt{2}}{2\sqrt{2}}\)
= 4
Express \(\frac{4π}{2}\) radians in degrees....
Given that \(a^{\frac{5}{6}} \times a^{\frac{-1}{n}} = 1\), solve for n...
The gradient of point P on the curve \(y = 3x^{2} - x + 3\) is 5. Find the coordinates of P....
If \(T = \begin{pmatrix} -2 & -5 \\ 3 & 8 \end{pmatrix}\), find \(T^{-1}\), the inverse of T...
The gradient of a curve at the point (-2, 0) is \(3x^{2} - 4x\). Find the equation of the curve....
If \(\begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}\)\(\begin{pmatrix}...