Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

706.

\(\alpha\) and \(\beta\) are the roots of the equation \(2x^{2} - 3x + 4 = 0\). Find \(\alpha + \beta\).\(\alpha\) and \(\beta\) are the roots of the equation \(2x^{2} - 3x + 4 = 0\). Find \(\alpha + \beta\).

A.

-2

B.

-\(\frac{3}{2}\)

C.

\(\frac{3}{2}\)

D.

2

Correct answer is C

\(\alpha + \beta = \frac{-b}{a}\)

From the equation, a = 2, b = -3 and c = 4

\(\alpha + \beta = \frac{-(-3)}{2} = \frac{3}{2}\)

707.

A straight line 2x+3y=6, passes through the point (-1,2). Find the equation of the line.

A.

2x-3y=2

B.

2x-3y=-2

C.

2x+3y=-4

D.

2x+3y=4

Correct answer is D

\(2x+3y = 6 \implies 3y = 6-2x\)

\(y = \frac{6}{3} - \frac{2x}{3}\) 

Parallel lines have the same gradient

\(\therefore\) Gradient of the line = \(\frac{-2}{3}\)

Line passes through (-1,2)

Equation: \(\frac{y-2}{x-(-1)} = \frac{y-2}{x+1} = \frac{-2}{3}\)

\(3y-6 = -2x-2 \implies 3y+2x = -2+6 =4\)

708.

Express cos150° in surd form.

A.

\(-\sqrt{3}\)

B.

\(-\frac{\sqrt{3}}{2}\)

C.

\(-\frac{1}{2}\)

D.

\(\frac{\sqrt{2}}{2}\)

Correct answer is B

cos150° = -cos30°

 = \(-\frac{\sqrt{3}}{2}\)

709.

If \(\begin{pmatrix}  2  &  1 \\  4 & 3 \end{pmatrix}\)\(\begin{pmatrix}  5 \\ 4 \end{pmatrix}\)  = k\(\begin{pmatrix}  17.5 \\ 40.0 \end{pmatrix}\), find the value of k.

A.

1.2

B.

3.6

C.

0.8

D.

0.5

Correct answer is C

\(\begin{pmatrix}  2  &  1 \\  4 & 3 \end{pmatrix}\)\(\begin{pmatrix}  5 \\ 4 \end{pmatrix}\)  = k\(\begin{pmatrix}  17.5 \\ 40.0 \end{pmatrix}\)

\(\begin{pmatrix}  10 + 4  \\  20 + 12\end{pmatrix}\) = \(\begin{pmatrix}  14 \\ 32\end{pmatrix}\) = k\(\begin{pmatrix}  17.5 \\ 40.0 \end{pmatrix}\)

k = \(\frac{14}{17.5} = \frac{32}{40} = 0.8\)

710.

How many ways can 6 students be seated around a circular table?

A.

36

B.

48

C.

120

D.

720

Correct answer is C

In a circular seating arrangement, we fix the position of one person and then rotate the others, so we have

\((6-1)! = 5! = 5\times4\times3\times2 = 120\)